3. Matheny ME, Whicher D, Thadaney Israni S. Artificial intelligence in health care: a report from the National Academy of Medicine. JAMA. 2020; 323(6):509–10.
https://doi.org/10.1001/jama.2019.21579
.
5. Bender D, Sartipi K. HL7 FHIR: An Agile and REST-ful approach to healthcare information exchange. In : Proceedings of the 26th IEEE International Symposium on Computer-based Medical Systems; 2013 Jun 20–22; Porto, Portugal. p. 326–31.
https://doi.org/10.1109/CBMS.2013.6627810
.
6. Klann JG, Joss MA, Embree K, Murphy SN. Data model harmonization for the All of Us Research Program: transforming i2b2 data into the OMOP common data model. PLoS One. 2019; 14(2):e0212463.
https://doi.org/10.1371/journal.pone.0212463
.
8. Kruse CS, Goswamy R, Raval Y, Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform. 2016; 4(4):e38.
https://doi.org/10.2196/medinform.5359
.
10. Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018; 68(668):143–4.
https://doi.org/10.3399/bjgp18X695213
.
11. Cha WC, Cho JS, Shin SD, Lee EJ, Ro YS. The impact of prolonged boarding of successfully resuscitated out-of-hospital cardiac arrest patients on survival-to-discharge rates. Resuscitation. 2015; 90:25–9.
https://doi.org/10.1016/j.resuscitation.2015.02.004
.
13. Florkowski C, Don-Wauchope A, Gimenez N, Rodriguez-Capote K, Wils J, Zemlin A. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM): does it leverage any advantage in clinical decision making? Crit Rev Clin Lab Sci. 2017; 54(7–8):471–94.
https://doi.org/10.1080/10408363.2017.1399336
.
15. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine learning and decision support in critical care. Proc IEEE Inst Electr Electron Eng. 2016; 104(2):444–66.
https://doi.org/10.1109/JPROC.2015.2501978
.
16. Pinto Dos Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R, et al. Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur Radiol. 2019; 29(4):1640–6.
https://doi.org/10.1007/s00330-018-5601-1
.
17. Zheng K, Haftel HM, Hirschl RB, O’Reilly M, Hanauer DA. Quantifying the impact of health IT implementations on clinical workflow: a new methodological perspective. J Am Med Inform Assoc. 2010; 17(4):454–61.
https://doi.org/10.1136/jamia.2010.004440
.
18. Ash JS, Berg M, Coiera E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. J Am Med Inform Assoc. 2004; 11(2):104–12.
https://doi.org/10.1197/jamia.M1471
.
20. Sequeira L, Almilaji K, Strudwick G, Jankowicz D, Tajirian T. EHR “SWAT” teams: a physician engagement initiative to improve Electronic Health Record (EHR) experiences and mitigate possible causes of EHR-related burnout. JAMIA Open. 2021; 4(2):ooab018.
https://doi.org/10.1093/jamiaopen/ooab018
.
22. Yoo J, Lee J, Rhee PL, Chang DK, Kang M, Choi JS, et al. Alert override patterns with a medication clinical decision support system in an academic emergency department: retrospective descriptive study. JMIR Med Inform. 2020; 8(11):e23351.
https://doi.org/10.2196/23351
.
25. Shiffman RN. Best practices for implementation of clinical decision support. Berner E, editor. Clinical decision support systems. Cham, Switzerland: Springer;2016. p. 99–109.
https://doi.org/10.1007/978-3-319-31913-1_6
.
28. Ranji SR, Rennke S, Wachter RM. Computerised provider order entry combined with clinical decision support systems to improve medication safety: a narrative review. BMJ Qual Saf. 2014; 23(9):773–80.
https://doi.org/10.1136/bmjqs-2013-002165
.
29. Sittig DF, Wright A, Coiera E, Magrabi F, Ratwani R, Bates DW, et al. Current challenges in health information technology-related patient safety. Health Informatics J. 2020; 26(1):181–9.
https://doi.org/10.1177/1460458218814893
.