J Stroke.  2023 Jan;25(1):111-118. 10.5853/jos.2022.02068.

Impact of Left Atrial or Left Atrial Appendage Thrombus on Stroke Outcome: A Matched Control Analysis

Affiliations
  • 1Department of Neurology, Yonsei University College of Medicine, Seoul, Korea

Abstract

Background and Purpose
Left atrial or left atrial appendage (LA/LAA) thrombi are frequently observed during cardioembolic evaluation in patients with ischemic stroke. This study aimed to investigate stroke outcomes in patients with LA/LAA thrombus.
Methods
This retrospective study included patients admitted to a single tertiary center in Korea between January 2012 and December 2020. Patients with nonvalvular atrial fibrillation who underwent transesophageal echocardiography or multi-detector coronary computed tomography were included in the study. Poor outcome was defined as modified Rankin Scale score >3 at 90 days. The inverse probability of treatment weighting analysis was performed.
Results
Of the 631 patients included in this study, 68 (10.7%) had LA/LAA thrombi. Patients were likely to have a poor outcome when an LA/LAA thrombus was detected (42.6% vs. 17.4%, P<0.001). Inverse probability of treatment weighting analysis yielded a higher probability of poor outcomes in patients with LA/LAA thrombus than in those without LA/LAA thrombus (P<0.001). Patients with LA/LAA thrombus were more likely to have relevant arterial occlusion on angiography (36.3% vs. 22.4%, P=0.047) and a longer hospital stay (8 vs. 7 days, P<0.001) than those without LA/LAA thrombus. However, there was no difference in early neurological deterioration during hospitalization or major adverse cardiovascular events within 3 months between the two groups.
Conclusions
Patients with ischemic stroke who had an LA/LAA thrombus were at risk of a worse functional outcome after 3 months, which was associated with relevant arterial occlusion and prolonged hospital stay.

Keyword

Atrial fibrillation; Ischemic stroke; Heart atria; Atrial appendage; Thrombosis; Prognosis

Figure

  • Figure 1. Flow chart of the included patients. TEE, transesophageal echocardiography; MDCT, multi-detector coronary computed tomography; mRS, modified Rankin Scale.

  • Figure 2. Distribution of the 3-month mRS score between patients with LA/LAA and those without LA/LAA for (A) the original dataset and (B) the inverse probability of treatment weighted dataset. Values represent number of patients (percentage). LA/LAA, left atrial or appendage; mRS, modified Rankin Scale.

  • Figure 3. Standardized mean differences of variables used for weighting to compare the balance between the two groups. Thrombolysis is defined as a composite of intravenous alteplase infusion and endovascular thrombectomy. A high E/e’ ratio was defined as a ratio >15. Poor pre-stroke mRS scores were defined as scores of >3. Old age was defined as >75 years. Low EF was defined as a value <40%. Low GFR was defined as a value of <30 mL/min/1.73 m2. A high initial NIHSS score was defined as a score >10. E/e’, early mitral inflow velocity to mitral annular early diastolic velocity ratio; mRS, modified Rankin Scale; EF, ejection fraction; GFR, glomerular filtration rate; NIHSS, National Institutes of Health Stroke Scale; CHF, congestive heart failure; CAOD, coronary artery occlusive disease.


Reference

References

1. Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology. 1978; 28:973–977.
2. Hart RG, Benavente O, McBride R, Pearce LA. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta-analysis. Ann Intern Med. 1999; 131:492–501.
3. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/ American Stroke Association. Stroke. 2021; 52:e364–e467.
4. Di Minno MN, Ambrosino P, Dello Russo A, Casella M, Tremoli E, Tondo C. Prevalence of left atrial thrombus in patients with non-valvular atrial fibrillation. A systematic review and metaanalysis of the literature. Thromb Haemost. 2016; 115:663–677.
5. Dawn B, Varma J, Singh P, Longaker RA, Stoddard MF. Cardiovascular death in patients with atrial fibrillation is better predicted by left atrial thrombus and spontaneous echocardiographic contrast as compared with clinical parameters. J Am Soc Echocardiogr. 2005; 18:199–205.
6. Nair CK, Holmberg MJ, Aronow WS, Shen X, Li H, Lakkireddy D. Thromboembolism in patients with atrial fibrillation with and without left atrial thrombus documented by transesophageal echocardiography. Am J Ther. 2009; 16:385–392.
7. Heo JH, Nam HS, Kim YD, Choi JK, Kim BM, Kim DJ, et al. Pathophysiologic and therapeutic perspectives based on thrombus histology in stroke. J Stroke. 2020; 22:64–75.
8. Kim YD, Nam HS, Kim SH, Kim EY, Song D, Kwon I, et al. Time-dependent thrombus resolution after tissue-type plasminogen activator in patients with stroke and mice. Stroke. 2015; 46:1877–1882.
9. Yoo J, Yang JH, Choi BW, Kim YD, Nam HS, Choi HY, et al. The frequency and risk of preclinical coronary artery disease detected using multichannel cardiac computed tomography in patients with ischemic stroke. Cerebrovasc Dis. 2012; 33:286–294.
10. Hur J, Kim YJ, Lee HJ, Ha JW, Heo JH, Choi EY, et al. Left atrial appendage thrombi in stroke patients: detection with twophase cardiac CT angiography versus transesophageal echocardiography. Radiology. 2009; 251:683–690.
11. Colombo PC, Mehra MR, Goldstein DJ, Estep JD, Salerno C, Jorde UP, et al. Comprehensive analysis of stroke in the longterm cohort of the MOMENTUM 3 study. Circulation. 2019; 139:155–168.
12. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015; 34:3661–3679.
13. Yoshida K, Solomon DH, Haneuse S, Kim SC, Patorno E, Tedeschi SK, et al. Multinomial extension of propensity score trimming methods: a simulation study. Am J Epidemiol. 2018; 188:609–616.
14. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009; 28:3083–3107.
15. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing;2013.
16. Manning WJ, Weintraub RM, Waksmonski CA, Haering JM, Rooney PS, Maslow AD, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med. 1995; 123:817–822.
17. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation. 2019; 140:e125–e151.
18. Hur J, Kim YJ, Lee HJ, Nam JE, Ha JW, Heo JH, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke. 2011; 42:2471–2477.
19. Pathan F, Hecht H, Narula J, Marwick TH. Roles of transesophageal echocardiography and cardiac computed tomography for evaluation of left atrial thrombus and associated pathology: a review and critical analysis. JACC Cardiovasc Imaging. 2018; 11:616–627.
20. Watson T, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet. 2009; 373:155–166.
21. Bertaglia E, Anselmino M, Zorzi A, Russo V, Toso E, Peruzza F, et al. NOACs and atrial fibrillation: incidence and predictors of left atrial thrombus in the real world. Int J Cardiol. 2017; 249:179–183.
22. Tsai LM, Lin LJ, Teng JK, Chen JH. Prevalence and clinical significance of left atrial thrombus in nonrheumatic atrial fibrillation. Int J Cardiol. 1997; 58:163–169.
23. Scherr D, Dalal D, Chilukuri K, Dong J, Spragg D, Henrikson CA, et al. Incidence and predictors of left atrial thrombus prior to catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2009; 20:379–384.
24. Ganesan AN, Chew DP, Hartshorne T, Selvanayagam JB, Aylward PE, Sanders P, et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: a systematic review and meta-analysis. Eur Heart J. 2016; 37:1591–1602.
25. Pollick C, Taylor D. Assessment of left atrial appendage function by transesophageal echocardiography. Implications for the development of thrombus. Circulation. 1991; 84:223–231.
26. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur J Cardiothorac Surg. 2016; 50:e1–e88.
27. Takasugi J, Yamagami H, Okata T, Toyoda K, Nagatsuka K. Dissolution of the left atrial appendage thrombus with rivaroxaban therapy. Cerebrovasc Dis. 2013; 36:322–323.
28. Zoppo F, Brandolino G, Berton A, Frigato N, Michieletto M, Zanocco A, et al. Predictors of left atrium appendage clot detection despite on-target warfarin prevention for atrial fibrillation. J Interv Card Electrophysiol. 2016; 35:151–158.
Full Text Links
  • JOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr