1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. 2015; Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17:405–24. DOI:
10.1038/gim.2015.30. PMID:
25741868. PMCID:
PMC4544753.
Article
2. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. 2019; Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12:3. DOI:
10.1186/s13073-019-0690-2. PMID:
31892348. PMCID:
PMC6938631.
Article
3. Kanavy DM, McNulty SM, Jairath MK, Brnich SE, Bizon C, Powell BC, et al. 2019; Comparative analysis of functional assay evidence use by ClinGen Variant Curation Expert Panels. Genome Med. 11:77. DOI:
10.1186/s13073-019-0683-1. PMID:
31783775. PMCID:
PMC6884856.
Article
4. Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, et al. 2021; Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 42:223–36. DOI:
10.1002/humu.24152. PMID:
33300245. PMCID:
PMC8374922.
5. Lee K, Krempely K, Roberts ME, Anderson MJ, Carneiro F, Chao E, et al. 2018; Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline
CDH1 sequence variants. Hum Mutat. 39:1553–68. DOI:
10.1002/humu.23650. PMID:
30311375. PMCID:
PMC6188664.
6. Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, et al. 2018; Gene-specific criteria for PTEN variant curation: Recommendations from the ClinGen
PTEN Expert Panel. Hum Mutat. 39:1581–92. DOI:
10.1002/humu.23636. PMID:
30311380. PMCID:
PMC6329583.
8. Ko JL, Chiao MC, Chang SL, Lin P, Lin JC, Sheu GT, et al. 2002; A novel
p53 mutant retained functional activity in lung carcinomas. DNA Repair (Amst). 1:755–62. DOI:
10.1016/S1568-7864(02)00094-0.
10. Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, et al. 2021; Identification and functional characterization of new missense SNPs in the coding region of the
TP53 gene. Cell Death Differ. 28:1477–92. DOI:
10.1038/s41418-020-00672-0. PMID:
33257846. PMCID:
PMC8166836.
Article
11. Lang V, Pallara C, Zabala A, Lobato-Gil S, Lopitz-Otsoa F, Farrás R, et al. 2014; Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Mol Oncol. 8:1026–42. DOI:
10.1016/j.molonc.2014.04.002. PMID:
24816189. PMCID:
PMC5528522.
Article
13. Steeg PS. 2006; Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 12:895–904. DOI:
10.1038/nm1469. PMID:
16892035.
Article
17. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. 2014;
In vitro cell migration and invasion assays. J Vis Exp. 51046. DOI:
10.3791/51046. PMID:
24962652. PMCID:
PMC4186330.
18. Zhang Y, Feng Y, Justus CR, Jiang W, Li Z, Lu JQ, et al. 2012; Comparative study of 3D morphology and functions on genetically engineered mouse melanoma cells. Integr Biol (Camb). 4:1428–36. DOI:
10.1039/c2ib20153d. PMID:
23064132.
Article
19. Spinelli L, Leslie NR. 2016; Assays to measure PTEN lipid phosphatase activity in vitro from purified enzyme or immunoprecipitates. Methods Mol Biol. 1447:95–105. DOI:
10.1007/978-1-4939-3746-2_6. PMID:
27514802.
Article
20. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. 1992; Definition of a consensus binding site for p53. Nat Genet. 1:45–9. DOI:
10.1038/ng0492-45. PMID:
1301998.
Article
22. Riley T, Sontag E, Chen P, Levine A. 2008; Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9:402–12. DOI:
10.1038/nrm2395. PMID:
18431400.
Article
23. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 1994; Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 265:346–55. DOI:
10.1126/science.8023157. PMID:
8023157.
Article
24. Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, et al. 1994; High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 265:386–91. DOI:
10.1126/science.8023159. PMID:
8023159.
Article
25. Jeffrey PD, Gorina S, Pavletich NP. 1995; Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 267:1498–502. DOI:
10.1126/science.7878469. PMID:
7878469.
Article
26. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, et al. 2003; Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 100:8424–9. DOI:
10.1073/pnas.1431692100. PMID:
12826609. PMCID:
PMC166245.
Article
27. Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. 2018; Mutational processes shape the landscape of
TP53 mutations in human cancer. Nat Genet. 50:1381–7. DOI:
10.1038/s41588-018-0204-y. PMID:
30224644. PMCID:
PMC6168352.
Article
28. Kharaziha P, Ceder S, Axell O, Krall M, Fotouhi O, Böhm S, et al. 2019; Functional characterization of novel germline
TP53 variants in Swedish families. Clin Genet. 96:216–25. DOI:
10.1111/cge.13564. PMID:
31081129.
Article
29. Yamada H, Shinmura K, Okudela K, Goto M, Suzuki M, Kuriki K, et al. 2007; Identification and characterization of a novel germ line
p53 mutation in familial gastric cancer in the Japanese population. Carcinogenesis. 28:2013–8. DOI:
10.1093/carcin/bgm175. PMID:
17690113.
Article
30. Li J, Yang L, Gaur S, Zhang K, Wu X, Yuan YC, et al. 2014; Mutants TP53 p.R273H and p.R273C but not p.R273G enhance cancer cell malignancy. Hum Mutat. 35:575–84. DOI:
10.1002/humu.22528. PMID:
24677579.
Article
32. Willis A, Jung EJ, Wakefield T, Chen X. 2004; Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 23:2330–8. DOI:
10.1038/sj.onc.1207396. PMID:
14743206.
Article
33. Brosh R, Rotter V. 2009; When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 9:701–13. DOI:
10.1038/nrc2693. PMID:
19693097.
Article
34. Pietenpol JA, Tokino T, Thiagalingam S, el-Deiry WS, Kinzler KW, Vogelstein B. 1994; Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A. 91:1998–2002. DOI:
10.1073/pnas.91.6.1998. PMID:
8134338. PMCID:
PMC43296.
Article
35. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. 2004; In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–8. DOI:
10.1126/science.1092472. PMID:
14704432.
Article
36. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, et al. 1993; Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 362:849–52. DOI:
10.1038/362849a0. PMID:
8479523.
Article
39. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, et al. 2001; The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 276:14537–40. DOI:
10.1074/jbc.C000881200. PMID:
11278247.
Article
40. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, et al. 2007; Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 316:1194–8. DOI:
10.1126/science.1139476. PMID:
17525340. PMCID:
PMC3573690.
Article
41. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. 1998; The C-terminal (BRCT) domains of
BRCA1 interact
in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 273:25388–92. DOI:
10.1074/jbc.273.39.25388. PMID:
9738006.
42. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. 2001; BACH1, a novel helicase-like protein, interacts directly with
BRCA1 and contributes to its DNA repair function. Cell. 105:149–60. DOI:
10.1016/S0092-8674(01)00304-X.
Article
43. Humphrey JS, Salim A, Erdos MR, Collins FS, Brody LC, Klausner RD. 1997; Human BRCA1 inhibits growth in yeast: potential use in diagnostic testing. Proc Natl Acad Sci U S A. 94:5820–5. DOI:
10.1073/pnas.94.11.5820. PMID:
9159158. PMCID:
PMC20864.
44. Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV. 1997; A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11:68–76. DOI:
10.1096/fasebj.11.1.9034168. PMID:
9034168.
Article
46. Caligo MA, Bonatti F, Guidugli L, Aretini P, Galli A. 2009; A yeast recombination assay to characterize human
BRCA1 missense variants of unknown pathological significance. Hum Mutat. 30:123–33. DOI:
10.1002/humu.20817. PMID:
18680205.
47. Millot GA, Berger A, Lejour V, Boulé JB, Bobo C, Cullin C, et al. 2011; Assessment of human Nter and Cter
BRCA1 mutations using growth and localization assays in yeast. Hum Mutat. 32:1470–80. DOI:
10.1002/humu.21608. PMID:
21922593.
48. Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, et al. 2011; BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 20:797–809. DOI:
10.1016/j.ccr.2011.11.014. PMID:
22172724.
Article
49. Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD. 2010; Identification of breast tumor mutations in
BRCA1 that abolish its function in homologous DNA recombination. Cancer Res. 70:988–95. DOI:
10.1158/0008-5472.CAN-09-2850. PMID:
20103620. PMCID:
PMC2943742.
50. Stynen B, Tournu H, Tavernier J, Van Dijck P. 2012; Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev. 76:331–82. DOI:
10.1128/MMBR.05021-11. PMID:
22688816. PMCID:
PMC3372256.
Article
51. Sarkar M, Magliery TJ. 2008; Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients. Mol Biosyst. 4:599–605. DOI:
10.1039/b802481b. PMID:
18493658.
Article
53. Lodovichi S, Vitello M, Cervelli T, Galli A. 2016; Expression of cancer related
BRCA1 missense variants decreases MMS-induced recombination in
Saccharomyces cerevisiae without altering its nuclear localization. Cell Cycle. 15:2723–31. DOI:
10.1080/15384101.2016.1215389. PMID:
27484786. PMCID:
PMC5053555.
Article
54. Coupier I, Baldeyron C, Rousseau A, Mosseri V, Pages-Berhouet S, Caux-Moncoutier V, et al. 2004; Fidelity of DNA double-strand break repair in heterozygous cell lines harbouring
BRCA1 missense mutations. Oncogene. 23:914–9. DOI:
10.1038/sj.onc.1207191. PMID:
14647443.
Article
55. Cervelli T, Lodovichi S, Bellè F, Galli A. 2020; Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. Microb Cell. 7:162–74. DOI:
10.15698/mic2020.07.721. PMID:
32656256. PMCID:
PMC7328678.
Article
56. Phelan CM, Dapic V, Tice B, Favis R, Kwan E, Barany F, et al. 2005; Classification of
BRCA1 missense variants of unknown clinical significance. J Med Genet. 42:138–46. DOI:
10.1136/jmg.2004.024711. PMID:
15689452. PMCID:
PMC1735988.
57. Hayes F, Cayanan C, Barillà D, Monteiro AN. 2000; Functional assay for BRCA1: mutagenesis of the COOH-terminal region reveals critical residues for transcription activation. Cancer Res. 60:2411–8.
58. Di Cecco L, Melissari E, Mariotti V, Iofrida C, Galli A, Guidugli L, et al. 2009; Characterisation of gene expression profiles of yeast cells expressing
BRCA1 missense variants. Eur J Cancer. 45:2187–96. DOI:
10.1016/j.ejca.2009.04.025. PMID:
19493677.
59. Monteiro AN, August A, Hanafusa H. 1996; Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci U S A. 93:13595–9. DOI:
10.1073/pnas.93.24.13595. PMID:
8942979. PMCID:
PMC19361.
60. Ostrow KL, McGuire V, Whittemore AS, DiCioccio RA. 2004; The effects of
BRCA1 missense variants V1804D and M1628T on transcriptional activity. Cancer Genet Cytogenet. 153:177–80. DOI:
10.1016/j.cancergencyto.2004.01.020. PMID:
15350310.
61. Sankaran S, Crone DE, Palazzo RE, Parvin JD. 2007; BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol Ther. 6:1853–7. DOI:
10.4161/cbt.6.12.5164. PMID:
18087219. PMCID:
PMC2643382.
63. Lovelock PK, Healey S, Au W, Sum EY, Tesoriero A, Wong EM, et al. 2006; Genetic, functional, and histopathological evaluation of two C-terminal
BRCA1 missense variants. J Med Genet. 43:74–83. DOI:
10.1136/jmg.2005.033258. PMID:
15923272. PMCID:
PMC2564506.
Article
64. Kais Z, Chiba N, Ishioka C, Parvin JD. 2012; Functional differences among
BRCA1 missense mutations in the control of centrosome duplication. Oncogene. 31:799–804. DOI:
10.1038/onc.2011.271. PMID:
21725363. PMCID:
PMC4222025.
Article
65. Norton JA, Ham CM, Van Dam J, Jeffrey RB, Longacre TA, Huntsman DG, et al. 2007;
CDH1 truncating mutations in the E-cadherin gene: an indication for total gastrectomy to treat hereditary diffuse gastric cancer. Ann Surg. 245:873–9. DOI:
10.1097/01.sla.0000254370.29893.e4. PMID:
17522512. PMCID:
PMC1876967.
66. Shore EM, Nelson WJ. 1991; Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin-Darby canine kidney epithelial cells. J Biol Chem. 266:19672–80. DOI:
10.1016/S0021-9258(18)55045-6.
Article
68. Shenoy S. 2019;
CDH1 (E-cadherin) mutation and gastric cancer: genetics, molecular mechanisms and guidelines for management. Cancer Manag Res. 11:10477–86. DOI:
10.2147/CMAR.S208818. PMID:
31853199. PMCID:
PMC6916690.
69. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, et al. 1998; E-cadherin germline mutations in familial gastric cancer. Nature. 392:402–5. DOI:
10.1038/32918. PMID:
9537325.
Article
70. Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. 2016;
CDH1 germline mutations and hereditary lobular breast cancer. Fam Cancer. 15:215–9. DOI:
10.1007/s10689-016-9869-5. PMID:
26759166.
71. Pharoah PD, Guilford P, Caldas C. 2001; Incidence of gastric cancer and breast cancer in
CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 121:1348–53. DOI:
10.1053/gast.2001.29611. PMID:
11729114.
Article
72. Barber M, Murrell A, Ito Y, Maia AT, Hyland S, Oliveira C, et al. 2008; Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer. J Pathol. 216:295–306. DOI:
10.1002/path.2426. PMID:
18788075.
Article
73. Melo S, Figueiredo J, Fernandes MS, Gonçalves M, Morais-de-Sá E, Sanches JM, et al. 2017; Predicting the functional impact of
CDH1 missense mutations in hereditary diffuse gastric cancer. Int J Mol Sci. 18:2687. DOI:
10.3390/ijms18122687. PMID:
29231860. PMCID:
PMC5751289.
Article
74. Gottardi CJ, Wong E, Gumbiner BM. 2001; E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 153:1049–60. DOI:
10.1083/jcb.153.5.1049. PMID:
11381089. PMCID:
PMC2174337.
77. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. 2008; Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–54. DOI:
10.1158/0008-5472.CAN-07-2938. PMID:
18483246.
Article
80. Saias L, Gomes A, Cazales M, Ducommun B, Lobjois V. 2015; Cell-cell adhesion and cytoskeleton tension oppose each other in regulating tumor cell aggregation. Cancer Res. 75:2426–33. DOI:
10.1158/0008-5472.CAN-14-3534. PMID:
25855380.
Article
81. Ozawa M, Ringwald M, Kemler R. 1990; Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A. 87:4246–50. DOI:
10.1073/pnas.87.11.4246. PMID:
2349235. PMCID:
PMC54085.
Article
83. Christofori G, Semb H. 1999; The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci. 24:73–6. DOI:
10.1016/S0968-0004(98)01343-7.
Article
84. Suriano G, Oliveira C, Ferreira P, Machado JC, Bordin MC, De Wever O, et al. 2003; Identification of
CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet. 12:575–82. DOI:
10.1093/hmg/ddg048. PMID:
12588804.
85. Corso G, Pedrazzani C, Pinheiro H, Fernandes E, Marrelli D, Rinnovati A, et al. 2011; E-cadherin genetic screening and clinico-pathologic characteristics of early onset gastric cancer. Eur J Cancer. 47:631–9. DOI:
10.1016/j.ejca.2010.10.011. PMID:
21106365.
Article
86. Brooks-Wilson AR, Kaurah P, Suriano G, Leach S, Senz J, Grehan N, et al. 2004; Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet. 41:508–17. DOI:
10.1136/jmg.2004.018275. PMID:
15235021. PMCID:
PMC1735838.
Article
87. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. 2014; An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 8:440–51. DOI:
10.4161/cam.36224. PMID:
25482647. PMCID:
PMC5154238.
Article
88. Suriano G, Oliveira MJ, Huntsman D, Mateus AR, Ferreira P, Casares F, et al. 2003; E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Hum Mol Genet. 12:3007–16. DOI:
10.1093/hmg/ddg316. PMID:
14500541.
Article
90. Weng LP, Brown JL, Baker KM, Ostrowski MC, Eng C. 2002; PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Hum Mol Genet. 11:1687–96. DOI:
10.1093/hmg/11.15.1687. PMID:
12095911.
Article
91. Weng LP, Brown JL, Eng C. 2001; PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet. 10:599–604. DOI:
10.1093/hmg/10.6.599. PMID:
11230179.
Article
93. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. 1998; Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor
PTEN. Cell. 95:29–39. DOI:
10.1016/S0092-8674(00)81780-8.
Article
94. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. 2015; PTEN: multiple functions in human malignant tumors. Front Oncol. 5:24. DOI:
10.3389/fonc.2015.00024. PMID:
25763354. PMCID:
PMC4329810.
Article
95. Sansal I, Sellers WR. 2004; The biology and clinical relevance of the
PTEN tumor suppressor pathway. J Clin Oncol. 22:2954–63. DOI:
10.1200/JCO.2004.02.141. PMID:
15254063.
96. Hlobilkova A, Guldberg P, Thullberg M, Zeuthen J, Lukas J, Bartek J. 2000; Cell cycle arrest by the
PTEN tumor suppressor is target cell specific and may require protein phosphatase activity. Exp Cell Res. 256:571–7. DOI:
10.1006/excr.2000.4867. PMID:
10772829.
98. Nieuwenhuis MH, Kets CM, Murphy-Ryan M, Yntema HG, Evans DG, Colas C, et al. 2014; Cancer risk and genotype-phenotype correlations in
PTEN hamartoma tumor syndrome. Fam Cancer. 13:57–63. DOI:
10.1007/s10689-013-9674-3. PMID:
23934601.
Article
99. Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, et al. 2001; Haploinsufficiency of the
PTEN tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A. 98:11563–8. DOI:
10.1073/pnas.201167798. PMID:
11553783. PMCID:
PMC58769.
101. Han SY, Kato H, Kato S, Suzuki T, Shibata H, Ishii S, et al. 2000; Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 60:3147–51.
102. Mighell TL, Evans-Dutson S, O'Roak BJ. 2018; A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. Am J Hum Genet. 102:943–55. DOI:
10.1016/j.ajhg.2018.03.018. PMID:
29706350. PMCID:
PMC5986715.
Article
103. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, et al. 1999; PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 96:6199–204. DOI:
10.1073/pnas.96.11.6199. PMID:
10339565. PMCID:
PMC26859.
Article
104. Tan MH, Mester J, Peterson C, Yang Y, Chen JL, Rybicki LA, et al. 2011; A clinical scoring system for selection of patients for
PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 88:42–56. DOI:
10.1016/j.ajhg.2010.11.013. PMID:
21194675. PMCID:
PMC3014373.
Article