Lab Med Online.  2022 Jul;12(3):145-158. 10.47429/lmo.2022.12.3.145.

Applying Functional Assay Evidence to Interpret Sequence Variants Identified in Hereditary Cancer Genes

Affiliations
  • 1Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea

Abstract

The demand for the interpretation of sequence variants identified by next-generation sequencing is gradually increasing in clinical laboratories. The American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) 2015 guidelines provide a basis for using functional assays as strong evidence for variant classification. However, it is challenging to use the evidence because the protein’s function and the functional assays used to prove it are too diverse. Therefore, this study reviewed various functional assays that can aid in classifying sequence variants in clinical laboratories. This review focuses on the 1) general functional assays associated with basic protein functions and processing and 2) functional assays related to the specific pathogenic mechanisms of four genes (TP53, BRCA1, CDH1, and PTEN) associated with hereditary cancer.

Keyword

Functional assay; Variant interpretation; Hereditary cancer; Variant of uncertain significance

Reference

1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. 2015; Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17:405–24. DOI: 10.1038/gim.2015.30. PMID: 25741868. PMCID: PMC4544753.
Article
2. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. 2019; Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12:3. DOI: 10.1186/s13073-019-0690-2. PMID: 31892348. PMCID: PMC6938631.
Article
3. Kanavy DM, McNulty SM, Jairath MK, Brnich SE, Bizon C, Powell BC, et al. 2019; Comparative analysis of functional assay evidence use by ClinGen Variant Curation Expert Panels. Genome Med. 11:77. DOI: 10.1186/s13073-019-0683-1. PMID: 31783775. PMCID: PMC6884856.
Article
4. Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, et al. 2021; Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 42:223–36. DOI: 10.1002/humu.24152. PMID: 33300245. PMCID: PMC8374922.
5. Lee K, Krempely K, Roberts ME, Anderson MJ, Carneiro F, Chao E, et al. 2018; Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants. Hum Mutat. 39:1553–68. DOI: 10.1002/humu.23650. PMID: 30311375. PMCID: PMC6188664.
6. Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, et al. 2018; Gene-specific criteria for PTEN variant curation: Recommendations from the ClinGen PTEN Expert Panel. Hum Mutat. 39:1581–92. DOI: 10.1002/humu.23636. PMID: 30311380. PMCID: PMC6329583.
7. Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, et al. 2004; BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol. 24:8457–66. DOI: 10.1128/MCB.24.19.8457-8466.2004. PMID: 15367667. PMCID: PMC516733.
Article
8. Ko JL, Chiao MC, Chang SL, Lin P, Lin JC, Sheu GT, et al. 2002; A novel p53 mutant retained functional activity in lung carcinomas. DNA Repair (Amst). 1:755–62. DOI: 10.1016/S1568-7864(02)00094-0.
9. Gilbert DF, Friedrich O. 2017. Cell viability assays. Springer;New York, NY: DOI: 10.1007/978-1-4939-6960-9.
10. Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, et al. 2021; Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Cell Death Differ. 28:1477–92. DOI: 10.1038/s41418-020-00672-0. PMID: 33257846. PMCID: PMC8166836.
Article
11. Lang V, Pallara C, Zabala A, Lobato-Gil S, Lopitz-Otsoa F, Farrás R, et al. 2014; Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Mol Oncol. 8:1026–42. DOI: 10.1016/j.molonc.2014.04.002. PMID: 24816189. PMCID: PMC5528522.
Article
12. Fidler IJ. 2002; Critical determinants of metastasis. Semin Cancer Biol. 12:89–96. DOI: 10.1006/scbi.2001.0416. PMID: 12027580.
Article
13. Steeg PS. 2006; Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 12:895–904. DOI: 10.1038/nm1469. PMID: 16892035.
Article
14. Debruyne D, Boterberg T, Bracke ME. 2014; Cell aggregation assays. Methods Mol Biol. 1070:77–92. DOI: 10.1007/978-1-4614-8244-4_6. PMID: 24092433.
Article
15. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, et al. 2013; In vitro cell migration and invasion assays. Mutat Res. 752:10–24. DOI: 10.1016/j.mrrev.2012.08.001. PMID: 22940039.
Article
16. Friedl P, Wolf K. 2010; Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 188:11–9. DOI: 10.1083/jcb.200909003. PMID: 19951899. PMCID: PMC2812848.
Article
17. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. 2014; In vitro cell migration and invasion assays. J Vis Exp. 51046. DOI: 10.3791/51046. PMID: 24962652. PMCID: PMC4186330.
18. Zhang Y, Feng Y, Justus CR, Jiang W, Li Z, Lu JQ, et al. 2012; Comparative study of 3D morphology and functions on genetically engineered mouse melanoma cells. Integr Biol (Camb). 4:1428–36. DOI: 10.1039/c2ib20153d. PMID: 23064132.
Article
19. Spinelli L, Leslie NR. 2016; Assays to measure PTEN lipid phosphatase activity in vitro from purified enzyme or immunoprecipitates. Methods Mol Biol. 1447:95–105. DOI: 10.1007/978-1-4939-3746-2_6. PMID: 27514802.
Article
20. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. 1992; Definition of a consensus binding site for p53. Nat Genet. 1:45–9. DOI: 10.1038/ng0492-45. PMID: 1301998.
Article
21. Zilfou JT, Lowe SW. 2009; Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 1:a001883. DOI: 10.1101/cshperspect.a001883. PMID: 20066118. PMCID: PMC2773645.
Article
22. Riley T, Sontag E, Chen P, Levine A. 2008; Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9:402–12. DOI: 10.1038/nrm2395. PMID: 18431400.
Article
23. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 1994; Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 265:346–55. DOI: 10.1126/science.8023157. PMID: 8023157.
Article
24. Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, et al. 1994; High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 265:386–91. DOI: 10.1126/science.8023159. PMID: 8023159.
Article
25. Jeffrey PD, Gorina S, Pavletich NP. 1995; Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 267:1498–502. DOI: 10.1126/science.7878469. PMID: 7878469.
Article
26. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, et al. 2003; Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 100:8424–9. DOI: 10.1073/pnas.1431692100. PMID: 12826609. PMCID: PMC166245.
Article
27. Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, et al. 2018; Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 50:1381–7. DOI: 10.1038/s41588-018-0204-y. PMID: 30224644. PMCID: PMC6168352.
Article
28. Kharaziha P, Ceder S, Axell O, Krall M, Fotouhi O, Böhm S, et al. 2019; Functional characterization of novel germline TP53 variants in Swedish families. Clin Genet. 96:216–25. DOI: 10.1111/cge.13564. PMID: 31081129.
Article
29. Yamada H, Shinmura K, Okudela K, Goto M, Suzuki M, Kuriki K, et al. 2007; Identification and characterization of a novel germ line p53 mutation in familial gastric cancer in the Japanese population. Carcinogenesis. 28:2013–8. DOI: 10.1093/carcin/bgm175. PMID: 17690113.
Article
30. Li J, Yang L, Gaur S, Zhang K, Wu X, Yuan YC, et al. 2014; Mutants TP53 p.R273H and p.R273C but not p.R273G enhance cancer cell malignancy. Hum Mutat. 35:575–84. DOI: 10.1002/humu.22528. PMID: 24677579.
Article
31. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsper-ger CP. 1998; Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 31:1–9. DOI: 10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-R.
Article
32. Willis A, Jung EJ, Wakefield T, Chen X. 2004; Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 23:2330–8. DOI: 10.1038/sj.onc.1207396. PMID: 14743206.
Article
33. Brosh R, Rotter V. 2009; When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 9:701–13. DOI: 10.1038/nrc2693. PMID: 19693097.
Article
34. Pietenpol JA, Tokino T, Thiagalingam S, el-Deiry WS, Kinzler KW, Vogelstein B. 1994; Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A. 91:1998–2002. DOI: 10.1073/pnas.91.6.1998. PMID: 8134338. PMCID: PMC43296.
Article
35. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. 2004; In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–8. DOI: 10.1126/science.1092472. PMID: 14704432.
Article
36. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, et al. 1993; Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 362:849–52. DOI: 10.1038/362849a0. PMID: 8479523.
Article
37. Lukin DJ, Carvajal LA, Liu WJ, Resnick-Silverman L, Manfredi JJ. 2015; p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol Cancer Res. 13:16–28. DOI: 10.1158/1541-7786.MCR-14-0177. PMID: 25158956. PMCID: PMC4312522.
Article
38. Takaoka M, Miki Y. 2018; BRCA1 gene: function and deficiency. Int J Clin Oncol. 23:36–44. DOI: 10.1007/s10147-017-1182-2. PMID: 28884397.
39. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, et al. 2001; The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 276:14537–40. DOI: 10.1074/jbc.C000881200. PMID: 11278247.
Article
40. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, et al. 2007; Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 316:1194–8. DOI: 10.1126/science.1139476. PMID: 17525340. PMCID: PMC3573690.
Article
41. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. 1998; The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 273:25388–92. DOI: 10.1074/jbc.273.39.25388. PMID: 9738006.
42. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. 2001; BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 105:149–60. DOI: 10.1016/S0092-8674(01)00304-X.
Article
43. Humphrey JS, Salim A, Erdos MR, Collins FS, Brody LC, Klausner RD. 1997; Human BRCA1 inhibits growth in yeast: potential use in diagnostic testing. Proc Natl Acad Sci U S A. 94:5820–5. DOI: 10.1073/pnas.94.11.5820. PMID: 9159158. PMCID: PMC20864.
44. Bork P, Hofmann K, Bucher P, Neuwald AF, Altschul SF, Koonin EV. 1997; A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11:68–76. DOI: 10.1096/fasebj.11.1.9034168. PMID: 9034168.
Article
45. Elledge SJ. 1996; Cell cycle checkpoints: preventing an identity crisis. Science. 274:1664–72. DOI: 10.1126/science.274.5293.1664. PMID: 8939848.
Article
46. Caligo MA, Bonatti F, Guidugli L, Aretini P, Galli A. 2009; A yeast recombination assay to characterize human BRCA1 missense variants of unknown pathological significance. Hum Mutat. 30:123–33. DOI: 10.1002/humu.20817. PMID: 18680205.
47. Millot GA, Berger A, Lejour V, Boulé JB, Bobo C, Cullin C, et al. 2011; Assessment of human Nter and Cter BRCA1 mutations using growth and localization assays in yeast. Hum Mutat. 32:1470–80. DOI: 10.1002/humu.21608. PMID: 21922593.
48. Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, et al. 2011; BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 20:797–809. DOI: 10.1016/j.ccr.2011.11.014. PMID: 22172724.
Article
49. Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD. 2010; Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res. 70:988–95. DOI: 10.1158/0008-5472.CAN-09-2850. PMID: 20103620. PMCID: PMC2943742.
50. Stynen B, Tournu H, Tavernier J, Van Dijck P. 2012; Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev. 76:331–82. DOI: 10.1128/MMBR.05021-11. PMID: 22688816. PMCID: PMC3372256.
Article
51. Sarkar M, Magliery TJ. 2008; Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients. Mol Biosyst. 4:599–605. DOI: 10.1039/b802481b. PMID: 18493658.
Article
52. Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, et al. 2015; Massively parallel functional analysis of BRCA1 RING domain variants. Genetics. 200:413–22. DOI: 10.1534/genetics.115.175802. PMID: 25823446. PMCID: PMC4492368.
Article
53. Lodovichi S, Vitello M, Cervelli T, Galli A. 2016; Expression of cancer related BRCA1 missense variants decreases MMS-induced recombination in Saccharomyces cerevisiae without altering its nuclear localization. Cell Cycle. 15:2723–31. DOI: 10.1080/15384101.2016.1215389. PMID: 27484786. PMCID: PMC5053555.
Article
54. Coupier I, Baldeyron C, Rousseau A, Mosseri V, Pages-Berhouet S, Caux-Moncoutier V, et al. 2004; Fidelity of DNA double-strand break repair in heterozygous cell lines harbouring BRCA1 missense mutations. Oncogene. 23:914–9. DOI: 10.1038/sj.onc.1207191. PMID: 14647443.
Article
55. Cervelli T, Lodovichi S, Bellè F, Galli A. 2020; Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. Microb Cell. 7:162–74. DOI: 10.15698/mic2020.07.721. PMID: 32656256. PMCID: PMC7328678.
Article
56. Phelan CM, Dapic V, Tice B, Favis R, Kwan E, Barany F, et al. 2005; Classification of BRCA1 missense variants of unknown clinical significance. J Med Genet. 42:138–46. DOI: 10.1136/jmg.2004.024711. PMID: 15689452. PMCID: PMC1735988.
57. Hayes F, Cayanan C, Barillà D, Monteiro AN. 2000; Functional assay for BRCA1: mutagenesis of the COOH-terminal region reveals critical residues for transcription activation. Cancer Res. 60:2411–8.
58. Di Cecco L, Melissari E, Mariotti V, Iofrida C, Galli A, Guidugli L, et al. 2009; Characterisation of gene expression profiles of yeast cells expressing BRCA1 missense variants. Eur J Cancer. 45:2187–96. DOI: 10.1016/j.ejca.2009.04.025. PMID: 19493677.
59. Monteiro AN, August A, Hanafusa H. 1996; Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci U S A. 93:13595–9. DOI: 10.1073/pnas.93.24.13595. PMID: 8942979. PMCID: PMC19361.
60. Ostrow KL, McGuire V, Whittemore AS, DiCioccio RA. 2004; The effects of BRCA1 missense variants V1804D and M1628T on transcriptional activity. Cancer Genet Cytogenet. 153:177–80. DOI: 10.1016/j.cancergencyto.2004.01.020. PMID: 15350310.
61. Sankaran S, Crone DE, Palazzo RE, Parvin JD. 2007; BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol Ther. 6:1853–7. DOI: 10.4161/cbt.6.12.5164. PMID: 18087219. PMCID: PMC2643382.
62. Kais Z, Parvin JD. 2008; Regulation of centrosomes by the BRCA1-dependent ubiquitin ligase. Cancer Biol Ther. 7:1540–3. DOI: 10.4161/cbt.7.10.7053. PMID: 18927495. PMCID: PMC2628548.
Article
63. Lovelock PK, Healey S, Au W, Sum EY, Tesoriero A, Wong EM, et al. 2006; Genetic, functional, and histopathological evaluation of two C-terminal BRCA1 missense variants. J Med Genet. 43:74–83. DOI: 10.1136/jmg.2005.033258. PMID: 15923272. PMCID: PMC2564506.
Article
64. Kais Z, Chiba N, Ishioka C, Parvin JD. 2012; Functional differences among BRCA1 missense mutations in the control of centrosome duplication. Oncogene. 31:799–804. DOI: 10.1038/onc.2011.271. PMID: 21725363. PMCID: PMC4222025.
Article
65. Norton JA, Ham CM, Van Dam J, Jeffrey RB, Longacre TA, Huntsman DG, et al. 2007; CDH1 truncating mutations in the E-cadherin gene: an indication for total gastrectomy to treat hereditary diffuse gastric cancer. Ann Surg. 245:873–9. DOI: 10.1097/01.sla.0000254370.29893.e4. PMID: 17522512. PMCID: PMC1876967.
66. Shore EM, Nelson WJ. 1991; Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin-Darby canine kidney epithelial cells. J Biol Chem. 266:19672–80. DOI: 10.1016/S0021-9258(18)55045-6.
Article
67. van Roy F, Berx G. 2008; The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–88. DOI: 10.1007/s00018-008-8281-1. PMID: 18726070.
Article
68. Shenoy S. 2019; CDH1 (E-cadherin) mutation and gastric cancer: genetics, molecular mechanisms and guidelines for management. Cancer Manag Res. 11:10477–86. DOI: 10.2147/CMAR.S208818. PMID: 31853199. PMCID: PMC6916690.
69. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, et al. 1998; E-cadherin germline mutations in familial gastric cancer. Nature. 392:402–5. DOI: 10.1038/32918. PMID: 9537325.
Article
70. Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. 2016; CDH1 germline mutations and hereditary lobular breast cancer. Fam Cancer. 15:215–9. DOI: 10.1007/s10689-016-9869-5. PMID: 26759166.
71. Pharoah PD, Guilford P, Caldas C. 2001; Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 121:1348–53. DOI: 10.1053/gast.2001.29611. PMID: 11729114.
Article
72. Barber M, Murrell A, Ito Y, Maia AT, Hyland S, Oliveira C, et al. 2008; Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer. J Pathol. 216:295–306. DOI: 10.1002/path.2426. PMID: 18788075.
Article
73. Melo S, Figueiredo J, Fernandes MS, Gonçalves M, Morais-de-Sá E, Sanches JM, et al. 2017; Predicting the functional impact of CDH1 missense mutations in hereditary diffuse gastric cancer. Int J Mol Sci. 18:2687. DOI: 10.3390/ijms18122687. PMID: 29231860. PMCID: PMC5751289.
Article
74. Gottardi CJ, Wong E, Gumbiner BM. 2001; E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 153:1049–60. DOI: 10.1083/jcb.153.5.1049. PMID: 11381089. PMCID: PMC2174337.
75. Jeanes A, Gottardi CJ, Yap AS. 2008; Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 27:6920–9. DOI: 10.1038/onc.2008.343. PMID: 19029934. PMCID: PMC2745643.
Article
76. Bruner HC, Derksen PWB. 2018; Loss of E-cadherin-dependent cell-cell adhesion and the development and progression of cancer. Cold Spring Harb Perspect Biol. 10:a029330. DOI: 10.1101/cshperspect.a029330. PMID: 28507022. PMCID: PMC5830899.
Article
77. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. 2008; Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–54. DOI: 10.1158/0008-5472.CAN-07-2938. PMID: 18483246.
Article
78. Yang J, Weinberg RA. 2008; Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 14:818–29. DOI: 10.1016/j.devcel.2008.05.009. PMID: 18539112.
Article
79. Berx G, van Roy F. 2009; Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 1:a003129. DOI: 10.1101/cshperspect.a003129. PMID: 20457567. PMCID: PMC2882122.
Article
80. Saias L, Gomes A, Cazales M, Ducommun B, Lobjois V. 2015; Cell-cell adhesion and cytoskeleton tension oppose each other in regulating tumor cell aggregation. Cancer Res. 75:2426–33. DOI: 10.1158/0008-5472.CAN-14-3534. PMID: 25855380.
Article
81. Ozawa M, Ringwald M, Kemler R. 1990; Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A. 87:4246–50. DOI: 10.1073/pnas.87.11.4246. PMID: 2349235. PMCID: PMC54085.
Article
82. Takeichi M. 1993; Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol. 5:806–11. DOI: 10.1016/0955-0674(93)90029-P.
Article
83. Christofori G, Semb H. 1999; The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci. 24:73–6. DOI: 10.1016/S0968-0004(98)01343-7.
Article
84. Suriano G, Oliveira C, Ferreira P, Machado JC, Bordin MC, De Wever O, et al. 2003; Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet. 12:575–82. DOI: 10.1093/hmg/ddg048. PMID: 12588804.
85. Corso G, Pedrazzani C, Pinheiro H, Fernandes E, Marrelli D, Rinnovati A, et al. 2011; E-cadherin genetic screening and clinico-pathologic characteristics of early onset gastric cancer. Eur J Cancer. 47:631–9. DOI: 10.1016/j.ejca.2010.10.011. PMID: 21106365.
Article
86. Brooks-Wilson AR, Kaurah P, Suriano G, Leach S, Senz J, Grehan N, et al. 2004; Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet. 41:508–17. DOI: 10.1136/jmg.2004.018275. PMID: 15235021. PMCID: PMC1735838.
Article
87. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. 2014; An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 8:440–51. DOI: 10.4161/cam.36224. PMID: 25482647. PMCID: PMC5154238.
Article
88. Suriano G, Oliveira MJ, Huntsman D, Mateus AR, Ferreira P, Casares F, et al. 2003; E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Hum Mol Genet. 12:3007–16. DOI: 10.1093/hmg/ddg316. PMID: 14500541.
Article
89. Worby CA, Dixon JE. 2014; PTEN. Annu Rev Biochem. 83:641–69. DOI: 10.1146/annurev-biochem-082411-113907. PMID: 24905788.
Article
90. Weng LP, Brown JL, Baker KM, Ostrowski MC, Eng C. 2002; PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Hum Mol Genet. 11:1687–96. DOI: 10.1093/hmg/11.15.1687. PMID: 12095911.
Article
91. Weng LP, Brown JL, Eng C. 2001; PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet. 10:599–604. DOI: 10.1093/hmg/10.6.599. PMID: 11230179.
Article
92. Planchon SM, Waite KA, Eng C. 2008; The nuclear affairs of PTEN. J Cell Sci. 121:249–53. DOI: 10.1242/jcs.022459. PMID: 18216329.
Article
93. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. 1998; Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 95:29–39. DOI: 10.1016/S0092-8674(00)81780-8.
Article
94. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. 2015; PTEN: multiple functions in human malignant tumors. Front Oncol. 5:24. DOI: 10.3389/fonc.2015.00024. PMID: 25763354. PMCID: PMC4329810.
Article
95. Sansal I, Sellers WR. 2004; The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 22:2954–63. DOI: 10.1200/JCO.2004.02.141. PMID: 15254063.
96. Hlobilkova A, Guldberg P, Thullberg M, Zeuthen J, Lukas J, Bartek J. 2000; Cell cycle arrest by the PTEN tumor suppressor is target cell specific and may require protein phosphatase activity. Exp Cell Res. 256:571–7. DOI: 10.1006/excr.2000.4867. PMID: 10772829.
97. Eng C. 2003; PTEN: one gene, many syndromes. Hum Mutat. 22:183–98. DOI: 10.1002/humu.10257. PMID: 12938083.
98. Nieuwenhuis MH, Kets CM, Murphy-Ryan M, Yntema HG, Evans DG, Colas C, et al. 2014; Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer. 13:57–63. DOI: 10.1007/s10689-013-9674-3. PMID: 23934601.
Article
99. Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, et al. 2001; Haploinsufficiency of the PTEN tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A. 98:11563–8. DOI: 10.1073/pnas.201167798. PMID: 11553783. PMCID: PMC58769.
100. Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. 2019; Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 59:66–79. DOI: 10.1016/j.semcancer.2019.02.001. PMID: 30738865.
Article
101. Han SY, Kato H, Kato S, Suzuki T, Shibata H, Ishii S, et al. 2000; Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 60:3147–51.
102. Mighell TL, Evans-Dutson S, O'Roak BJ. 2018; A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. Am J Hum Genet. 102:943–55. DOI: 10.1016/j.ajhg.2018.03.018. PMID: 29706350. PMCID: PMC5986715.
Article
103. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, et al. 1999; PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 96:6199–204. DOI: 10.1073/pnas.96.11.6199. PMID: 10339565. PMCID: PMC26859.
Article
104. Tan MH, Mester J, Peterson C, Yang Y, Chen JL, Rybicki LA, et al. 2011; A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 88:42–56. DOI: 10.1016/j.ajhg.2010.11.013. PMID: 21194675. PMCID: PMC3014373.
Article
105. Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. 2015; Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet. 52:128–34. DOI: 10.1136/jmedgenet-2014-102803. PMID: 25527629. PMCID: PMC4316932.
Article
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr