1. International Agency for Research on Cancer. 2022. Cancer today: data visualization tools for exploring the global cancer burden in 2020 [Internet]. International Agency for Research on Cancer;Lyon: Available from:
http://gco.iarc.fr/today/home. cited 2022 September 19.
2. Chow LW, Yip AY, Ng EL. 2012; Prevention of oncological diseases: primary and secondary prevention. Int J Biol Markers. 27:e337–43. DOI:
10.5301/JBM.2012.10370. PMID:
23250774.
Article
4. Kolb TM, Lichy J, Newhouse JH. 2002; Comparison of the performance of screening mammography, physical examination, and breastUS and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 225:165–75. DOI:
10.1148/radiol.2251011667. PMID:
12355001.
Article
6. Burkett BJ, Hanemann CW. 2016; A review of supplemental screening ultrasound for breast cancer: certain populations of women with dense breast tissue may benefit. Acad Radiol. 23:1604–9. DOI:
10.1016/j.acra.2016.05.017. PMID:
27374700.
7. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, et al. 2008; Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 299:2151–63. DOI:
10.1001/jama.299.18.2151. PMID:
18477782. PMCID:
PMC2718688.
Article
8. Zanotel M, Bednarova I, Londero V, Linda A, Lorenzon M, Girometti R, et al. 2018; Automated breast ultrasound: basic principles and emerging clinical applications. Radiol Med. 123:1–12. DOI:
10.1007/s11547-017-0805-z. PMID:
28849324.
Article
9. Giger ML, Inciardi MF, Edwards A, Papaioannou J, Drukker K, Jiang Y, et al. 2016; Automated breast ultrasound in breast cancer screening of women with dense breasts: reader study of mammography-negative and mammography-positive cancers. AJR Am J Roentgenol. 206:1341–50. DOI:
10.2214/AJR.15.15367. PMID:
27043979.
Article
10. Brem RF, Tabár L, Duffy SW, Inciardi MF, Guingrich JA, Hashimoto BE, et al. 2015; Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology. 274:663–73. DOI:
10.1148/radiol.14132832. PMID:
25329763.
Article
11. Chang JM, Moon WK, Cho N, Park JS, Kim SJ. 2011; Radiologists' performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS). Eur J Radiol. 78:99–103. DOI:
10.1016/j.ejrad.2011.01.074. PMID:
21330080.
Article
13. Nicosia L, Ferrari F, Bozzini AC, Latronico A, Trentin C, Meneghetti L, et al. 2020; Automatic breast ultrasound: state of the art and future perspectives. Ecancermedicalscience. 14:1062. DOI:
10.3332/ecancer.2020.1062. PMID:
32728378. PMCID:
PMC7373644.
Article
14. Maturo VG, Zusmer NR, Gilson AJ, Smoak WM, Janowitz WR, Bear BE, et al. 1980; Ultrasound of the whole breast utilizing a dedicated automated breast scanner. Radiology. 137:457–63. DOI:
10.1148/radiology.137.2.6254110. PMID:
6254110.
Article
15. Kelly KM, Dean J, Lee SJ, Comulada WS. 2010; Breast cancer detection: radiologists' performance using mammography with and without automated whole-breast ultrasound. Eur Radiol. 20:2557–64. DOI:
10.1007/s00330-010-1844-1. PMID:
20632009. PMCID:
PMC2948156.
Article
16. Giuliano V, Giuliano C. 2013; Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging. 37:480–6. DOI:
10.1016/j.clinimag.2012.09.018. PMID:
23116728.
Article
17. Wilczek B, Wilczek HE, Rasouliyan L, Leifland K. 2016; Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol. 85:1554–63. DOI:
10.1016/j.ejrad.2016.06.004. PMID:
27501888.
Article
18. Zhang X, Chen J, Zhou Y, Mao F, Lin Y, Shen S, et al. 2019; Diagnostic value of an automated breast volume scanner compared with a hand-held ultrasound: a meta-analysis. Gland Surg. 8:698–711. DOI:
10.21037/gs.2019.11.18. PMID:
32042678. PMCID:
PMC6989916.
Article
19. Wang HY, Jiang YX, Zhu QL, Zhang J, Dai Q, Liu H, et al. 2012; Differentiation of benign and malignant breast lesions: a comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur J Radiol. 81:3190–200. DOI:
10.1016/j.ejrad.2012.01.034. PMID:
22386134.
Article
20. Chen L, Chen Y, Diao XH, Fang L, Pang Y, Cheng AQ, et al. 2013; Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses. Ultrasound MedBiol. 39:1735–42. DOI:
10.1016/j.ultrasmedbio.2013.04.003. PMID:
23849390.
Article
21. Choi WJ, Cha JH, Kim HH, Shin HJ, Kim H, Chae EY, et al. 2014; Comparison of automated breast volume scanning and hand- held ultrasound in the detection of breast cancer: an analysis of 5,566 patient evaluations. Asian Pac J Cancer Prev. 15:9101–5. DOI:
10.7314/APJCP.2014.15.21.9101. PMID:
25422185.
22. Jeh SK, Kim SH, Choi JJ, Jung SS, Choe BJ, Park S, et al. 2016; Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions. Acta Radiol. 57:162–9. DOI:
10.1177/0284185115574872. PMID:
25766727.
Article
23. Hellgren R, Dickman P, Leifland K, Saracco A, Hall P, Celebioglu F. 2017; Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening. Acta Radiol. 58:515–20. DOI:
10.1177/0284185116665421. PMID:
27565633.
Article
24. Niu L, Bao L, Zhu L, Tan Y, Xu X, Shan Y, et al. 2019; Diagnostic performance of automated breast ultrasound in differentiating benign and malignant breast masses in asymptomatic women: a comparison study with handheld ultrasound. J Ultrasound Med. 38:2871–80. DOI:
10.1002/jum.14991. PMID:
30912178.
Article
25. Kim H, Cha JH, Oh HY, Kim HH, Shin HJ, Chae EY. 2014; Comparison of conventional and automated breast volume ultrasound in the description and characterization of solid breast masses based on BI-RADS features. Breast Cancer. 21:423–8. DOI:
10.1007/s12282-012-0419-1. PMID:
23086698.
Article
26. Zhang X, Lin X, Tan Y, Zhu Y, Wang H, Feng R, et al. 2018; A multicenter hospital-based diagnosis study of automated breast ultrasound system in detecting breast cancer among Chinese women. Chin J Cancer Res. 30:231–9. DOI:
10.21147/j.issn.1000-9604.2018.02.06. PMID:
29861608. PMCID:
PMC5953959.
Article
27. Xiao YM, Chen ZH, Zhou QC, Wang Z. 2015; The efficacy of automated breast volume scanning over conventional ultrasonography among patients with breast lesions. Int J Gynaecol Obstet. 131:293–6. DOI:
10.1016/j.ijgo.2015.05.036. PMID:
26493011.
Article
28. Ibraheem SA, Mahmud R, Mohamad Saini S, Abu Hassan H, Keiteb AS, Dirie AM. 2022; Evaluation of diagnostic performance of automatic breast volume scanner compared to handheld ultrasound on different breast lesions: a systematic review. Diagnostics (Basel). 12:541. DOI:
10.3390/diagnostics12020541. PMID:
35204629. PMCID:
PMC8870745.
Article
29. Schmachtenberg C, Fischer T, Hamm B, Bick U. 2017; Diagnostic performance of automated breast volume scanning (ABVS) compared to handheld ultrasonography with breast MRI as the gold standard. Acad Radiol. 24:954–61. DOI:
10.1016/j.acra.2017.01.021. PMID:
28336007.
Article
30. Girometti R, Zanotel M, Londero V, Bazzocchi M, Zuiani C. 2017; Comparison between automatedbreast volume scanner (ABVS) versus hand-held ultrasound as a second look procedure after magnetic resonance imaging. Eur Radiol. 27:3767–75. DOI:
10.1007/s00330-017-4749-4. PMID:
28120030.
Article
31. Chae EY, Shin HJ, Kim HJ, Yoo H, Baek S, Cha JH, et al. 2013; Diagnostic performance of automated breast ultrasound as a replacement for a hand-held second-look ultrasound for breast lesions detected initially on magnetic resonance imaging. Ultrasound MedBiol. 39:2246–54. DOI:
10.1016/j.ultrasmedbio.2013.07.005. PMID:
24035627.
Article
32. Kim Y, Kang BJ, Kim SH, Lee EJ. 2016; Prospective study comparing two second-look ultrasound techniques: handheld ultrasound and an automated breast volume scanner. J Ultrasound Med. 2103–12. DOI:
10.7863/ultra.15.11076. PMID:
27503758.
33. Van Zelst JC, Platel B, Karssemeijer N, Mann RM. 2015; Multiplanar reconstructions of 3D automated breast ultrasound improve lesion differentiation by radiologists. Acad Radiol. 22:1489–96. DOI:
10.1016/j.acra.2015.08.006. PMID:
26345538.
Article
34. Boca Bene I, Ciurea AI, Ciortea CA, Dudea SM. 2021; Pros and cons for Automated Breast Ultrasound (ABUS): a narrative review. J Pers Med. 703. DOI:
10.3390/jpm11080703. PMID:
34442347. PMCID:
PMC8400952.
35. Wang Q, Li B, Liu Z, Shang H, Jing H, Shao H, et al. 2022; Prediction model of axillary lymph node status using automated breast ultrasound (ABUS) and ki-67 status in early-stage breast cancer. BMC Cancer. 22:929. DOI:
10.1186/s12885-022-10034-3. PMID:
36031602. PMCID:
PMC9420256.
Article
36. Xiao Y, Zhou Q, Chen Z. 2015; Automated breast volume scanning versus conventional ultrasound in breast cancer screening. Acad Radiol. 22:387–99. DOI:
10.1016/j.acra.2014.08.013. PMID:
25620036.
Article
37. Isobe S, Tozaki M, Yamaguchi M, Ogawa Y, Homma K, Satomi R, et al. 2011; Detectability of breast lesions under the nipple using an automated breast volume scanner: comparison with handheld ultrasonography. Jpn J Radiol. 29:361–5. DOI:
10.1007/s11604-010-0555-5. PMID:
21717306.
Article
38. Kim SH, Kang BJ, Choi BG, Choi JJ, Lee JH, Song BJ, et al. 2013; Radiologists' performance for detecting lesions and the interobserver variability of automated whole breast ultrasound. Korean J Radiol. 14:154–63. DOI:
10.3348/kjr.2013.14.2.154. PMID:
23482698. PMCID:
PMC3590325.
Article
39. Meng Z, Chen C, Zhu Y, Zhang S, Wei C, Hu B, et al. 2015; Diagnostic performance of the automated breast volume scanner: a systematic review of inter-rater reliability/agreement and meta-analysis of diagnostic accuracy for differentiating benign and malignant breast lesions. Eur Radiol. 25:3638–47. DOI:
10.1007/s00330-015-3759-3. PMID:
25916389.
Article
40. Kang SY, Lee SJ, Youn HJ, Jung SH. 2017; Clinical significance of automated breast ultrasound. J Surg Ultrasound. 4:12–7.
41. Zheng FY, Lu Q, Huang BJ, Xia HS, Yan LX, Wang X, et al. 2017; Imaging features of automated breast volume scanner: correlation with molecular subtypes of breast cancer. Eur J Radiol. 86:267–75. DOI:
10.1016/j.ejrad.2016.11.032. PMID:
28027759.
Article
42. Jiang J, Chen YQ, Xu YZ, Chen ML, Zhu YK, Guan WB, et al. 2014; Correlation between three-dimensional ultrasound features and pathological prognostic factors in breast cancer. Eur Radiol. 24:1186–96. DOI:
10.1007/s00330-014-3135-8. PMID:
24723231.
Article
43. Wang X, Huo L, He Y, Fan Z, Wang T, Xie Y, et al. 2016; Early prediction of pathological outcomes to neoadjuvant chemotherapy in breast cancer patients using automated breast ultrasound. Chin J Cancer Res. 28:478–85. DOI:
10.21147/j.issn.1000-9604.2016.05.02. PMID:
27877006. PMCID:
PMC5101221.
Article
44. Jiang Y, Inciardi MF, Edwards AV, Papaioannou J. 2018; Interpretation time using a concurrent-read computer-aided detection system for automated breast ultrasound in breast cancer screening of women with dense breast tissue. AJR Am J Roentgenol. 211:452–61. DOI:
10.2214/AJR.18.19516. PMID:
29792747.
Article
45. Liao WX, He P, Hao J, Wang XY, Yang RL, An D, et al. 2020; Automatic identification of breast ultrasound image based on supervised block-based region segmentation algorithm and features combination migration deep learning model. IEEE J Biomed Health Inform. 24:984–93. DOI:
10.1109/JBHI.2019.2960821. PMID:
31869809.
Article