J Rheum Dis.  2023 Jan;30(1):3-17. 10.4078/jrd.22.0046.

Positive Effects of Biologics on Osteoporosis in Rheumatoid Arthritis

Affiliations
  • 1Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea

Abstract

Osteoporosis is a systemic skeletal disorder that causes vulnerability of bones to fracture owing to reduction in bone density and deterioration of the bone tissue microstructure. The prevalence of osteoporosis is higher in patients with autoimmune inflammatory rheumatic diseases, including rheumatoid arthritis (RA), than in those of the general population. In this autoimmune inflammatory rheumatic disease, in addition to known risk factors for osteoporosis, various factors such as chronic inflammation, autoantibodies, metabolic disorders, drugs, and decreased physical activity contribute to additional risk. In RA, disease-related inflammation plays an important role in local or systemic bone loss, and active treatment for inflammation can help prevent osteoporosis. In addition to conventional synthetic disease-modifying anti-rheumatic drugs that have been traditionally used for treatment of RA, biologic DMARDs and targeted synthetic DMARDs have been widely used. These agents can be employed more selectively and precisely based on disease pathogenesis. It has been reported that these drugs can inhibit bone loss by not only reducing inflammation in RA, but also by inhibiting bone resorption and promoting bone formation. In this review, the pathogenesis and research results of the increase in osteoporosis in RA are reviewed, and the effects of biological agents on osteoporosis are discussed.

Keyword

Biologics; Osteoporosis; Rheumatoid arthritis

Figure

  • Fig. 1 Risk factors of osteoporosis in rheumatic disease.

  • Fig. 2 Immunopathogenesis of osteoporosis in RA. DC: dendritic cell, IL: interleukin, DKK-1: dicckopf-1, Th: T helper, Treg: regulator T, TNF: tumor necrosis factor, MSC: mesenchymal stem cell, IFN: interferon, HSC: mesenchymal stem cell, OPG: osteoprotegerin, RANKL: receptor activator of NF-κB ligand, RANK: receptor activator of NF-κB, G-CSF: granulocyte colony stimulating factor [21].


Reference

1. NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis. and Therapy. 2001; Osteoporosis prevention, diagnosis, and therapy. JAMA. 285:785–95. DOI: 10.1001/jama.285.6.785. PMID: 11176917.
2. Melton LJ 3rd. 2001; The prevalence of osteoporosis: gender and racial comparison. Calcif Tissue Int. 69:179–81. DOI: 10.1007/s00223-001-1043-9. PMID: 11730244.
3. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. 2014; The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 29:2520–6. DOI: 10.1002/jbmr.2269. PMID: 24771492. PMCID: PMC4757905.
4. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O'Malley CD. 2014; Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 9:182. DOI: 10.1007/s11657-014-0182-3. PMID: 24847682.
5. Keller JJ, Kang JH, Lin HC. 2013; Association between osteoporosis and psoriasis: results from the Longitudinal Health Insurance Database in Taiwan. Osteoporos Int. 24:1835–41. DOI: 10.1007/s00198-012-2185-5. PMID: 23052942.
6. Oo WM, Naganathan V, Bo MT, Hunter DJ. 2018; Clinical utilities of quantitative ultrasound in osteoporosis associated with inflammatory rheumatic diseases. Quant Imaging Med Surg. 8:100–13. DOI: 10.21037/qims.2018.02.02. PMID: 29541626. PMCID: PMC5835660.
7. McInnes IB, Schett G. 2011; The pathogenesis of rheumatoid arthritis. N Engl J Med. 365:2205–19. DOI: 10.1056/NEJMra1004965. PMID: 22150039.
8. Firestein GS. 2003; Evolving concepts of rheumatoid arthritis. Nature. 423:356–61. DOI: 10.1038/nature01661. PMID: 12748655.
9. Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK. 2000; Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum. 43:522–30. DOI: 10.1002/1529-0131(200003)43:3<522::AID-ANR7>3.0.CO;2-Y. PMID: 10728744.
10. Xu S, Wang Y, Lu J, Xu J. 2012; Osteoprotegerin and RANKL in the pathogenesis of rheumatoid arthritis-induced osteoporosis. Rheumatol Int. 32:3397–403. DOI: 10.1007/s00296-011-2175-5. PMID: 22057136.
11. Raterman HG, Lems WF. 2019; Pharmacological management of osteoporosis in rheumatoid arthritis patients: a review of the literature and practical guide. Drugs Aging. 36:1061–72. DOI: 10.1007/s40266-019-00714-4. PMID: 31541358. PMCID: PMC6884430.
12. Schett G. 2009; Osteoimmunology in rheumatic diseases. Arthritis Res Ther. 11:210. DOI: 10.1186/ar2571. PMID: 19232069. PMCID: PMC2688223.
13. Schett G, Saag KG, Bijlsma JW. 2010; From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis. 69:1415–9. DOI: 10.1136/ard.2010.135061. PMID: 20650876.
14. Geusens P, Lems WF. 2011; Osteoimmunology and osteoporosis. Arthritis Res Ther. 13:242. DOI: 10.1186/ar3375. PMID: 21996023. PMCID: PMC3308061.
15. Soós B, Szentpétery Á, Raterman HG, Lems WF, Bhattoa HP, Szekanecz Z. 2022; Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 18:249–57. DOI: 10.1038/s41584-022-00764-w. PMID: 35273387.
16. Fischer V, Haffner-Luntzer M. 2022; Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 123:14–21. DOI: 10.1016/j.semcdb.2021.05.014. PMID: 34024716.
17. Takayanagi H. 2009; Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 5:667–76. DOI: 10.1038/nrrheum.2009.217. PMID: 19884898.
18. Srivastava RK, Dar HY, Mishra PK. 2018; Immunoporosis: immunology of osteoporosis-role of T cells. Front Immunol. 9:657. DOI: 10.3389/fimmu.2018.00657. PMID: 29675022. PMCID: PMC5895643.
19. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. 2015; T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 74:5–17. DOI: 10.1016/j.cyto.2014.09.011. PMID: 25458968. PMCID: PMC4416069.
20. Saxena Y, Routh S, Mukhopadhaya A. 2021; Immunoporosis: role of innate immune cells in osteoporosis. Front Immunol. 12:687037. DOI: 10.3389/fimmu.2021.687037. PMID: 34421899. PMCID: PMC8374941.
21. Ming J, Cronin SJF, Penninger JM. 2020; Targeting the RANKL/RANK/OPG axis for cancer therapy. Front Oncol. 10:1283. DOI: 10.3389/fonc.2020.01283. PMID: 32850393. PMCID: PMC7426519.
22. Hodge JM, Collier FM, Pavlos NJ, Kirkland MA, Nicholson GC. 2011; M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One. 6:e21462. DOI: 10.1371/journal.pone.0021462. PMID: 21738673. PMCID: PMC3126821.
23. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. 2018; Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107. DOI: 10.1080/03008207.2017.1290085. PMID: 28324674. PMCID: PMC5612831.
24. Schoppet M, Preissner KT, Hofbauer LC. 2002; RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 22:549–53. DOI: 10.1161/01.ATV.0000012303.37971.DA. PMID: 11950689.
25. Zerbini CAF, Clark P, Mendez-Sanchez L, Pereira RMR, Messina OD, Uña CR, et al. 2017; Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int. 28:429–46. DOI: 10.1007/s00198-016-3769-2. PMID: 27796445.
26. Ono T, Hayashi M, Sasaki F, Nakashima T. 2020; RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 40:2. DOI: 10.1186/s41232-019-0111-3. PMID: 32047573. PMCID: PMC7006158.
27. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. 2000; TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 106:1481–8. DOI: 10.1172/JCI11176. PMID: 11120755. PMCID: PMC387259.
28. Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, et al. 2011; Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol. 38:821–7. DOI: 10.3899/jrheum.100089. PMID: 21362762.
29. Liu YY, Long L, Wang SY, Guo JP, Ye H, Cui LF, et al. 2010; Circulating Dickkopf-1 and osteoprotegerin in patients with early and longstanding rheumatoid arthritis. Chin Med J (Engl). 123:1407–12.
30. Bonewald LF. 2013; In: Rosen CJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames. Wiley-Blackwell. 34–41. DOI: 10.1002/9781118453926.ch4.
31. Knothe Tate ML, Adamson JR, Tami AE, Bauer TW. 2004; The osteocyte. Int J Biochem Cell Biol. 36:1–8. DOI: 10.1016/S1357-2725(03)00241-3. PMID: 14592527.
32. Luckheeram RV, Zhou R, Verma AD, Xia B. 2012; CD4+T cells: differentiation and functions. Clin Dev Immunol. 2012:925135. DOI: 10.1155/2012/925135. PMID: 22474485. PMCID: PMC3312336.
33. Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, et al. 2017; Melatonin signaling in T cells: functions and applications. J Pineal Res. 62:e12394. DOI: 10.1111/jpi.12394. PMID: 28152213.
34. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. 2014; T helper cells plasticity in inflammation. Cytometry A. 85:36–42. DOI: 10.1002/cyto.a.22348. PMID: 24009159.
35. Hirahara K, Poholek A, Vahedi G, Laurence A, Kanno Y, Milner JD, et al. 2013; Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol. 131:1276–87. DOI: 10.1016/j.jaci.2013.03.015. PMID: 23622118. PMCID: PMC3677748.
36. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. 2000; T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 408:600–5. DOI: 10.1038/35046102. PMID: 11117749.
37. Belizário JE, Brandão W, Rossato C, Peron JP. 2016; Thymic and postthymic regulation of naïve CD4(+) T-cell lineage fates in humans and mice models. Mediators Inflamm. 2016:9523628. DOI: 10.1155/2016/9523628. PMID: 27313405. PMCID: PMC4904118.
38. Zhu J, Paul WE. 2008; CD4 T cells: fates, functions, and faults. Blood. 112:1557–69. DOI: 10.1182/blood-2008-05-078154. PMID: 18725574. PMCID: PMC2518872.
39. Palmqvist P, Lundberg P, Persson E, Johansson A, Lundgren I, Lie A, et al. 2006; Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J Biol Chem. 281:2414–29. DOI: 10.1074/jbc.M510160200. PMID: 16251181.
40. Pacifici R. 2010; T cells: critical bone regulators in health and disease. Bone. 47:461–71. DOI: 10.1016/j.bone.2010.04.611. PMID: 20452473. PMCID: PMC2926258.
41. Vautier S, Sousa M, Brown GD. 2010; C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev. 21:405–12. DOI: 10.1016/j.cytogfr.2010.10.001. PMID: 21075040. PMCID: PMC3001956.
42. Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar Mde J, García-Magallanes N, Vibanco-Pérez N. 2014; Th17 cells in autoimmune and infectious diseases. Int J Inflam. 2014:651503. DOI: 10.1155/2014/651503. PMID: 25152827. PMCID: PMC4137509.
43. Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, et al. 2009; IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem. 108:947–55. DOI: 10.1002/jcb.22326. PMID: 19728295.
44. Oelzner P, Franke S, Lehmann G, Eidner T, Hein G, Wolf G. 2012; The balance between soluble receptors regulating IL-6 trans-signaling is predictive for the RANKL/osteoprotegerin ratio in postmenopausal women with rheumatoid arthritis. Rheumatol Int. 32:199–206. DOI: 10.1007/s00296-010-1606-z. PMID: 20821212.
45. Miossec P, Korn T, Kuchroo VK. 2009; Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–98. DOI: 10.1056/NEJMra0707449. PMID: 19710487.
46. Martinez GJ, Nurieva RI, Yang XO, Dong C. 2008; Regulation and function of proinflammatory TH17 cells. Ann N Y Acad Sci. 1143:188–211. DOI: 10.1196/annals.1443.021. PMID: 19076351. PMCID: PMC5793850.
47. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. 2006; Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 203:2673–82. DOI: 10.1084/jem.20061775. PMID: 17088434. PMCID: PMC2118166.
48. Dokoupilová E, Aelion J, Takeuchi T, Malavolta N, Sfikakis PP, Wang Y, et al. 2018; Secukinumab after anti-tumour necrosis factor-α therapy: a phase III study in active rheumatoid arthritis. Scand J Rheumatol. 47:276–81. DOI: 10.1080/03009742.2017.1390605. PMID: 29458278.
49. de Rezende LC, Silva IV, Rangel LB, Guimarães MC. 2010; Regulatory T cell as a target for cancer therapy. Arch Immunol Ther Exp (Warsz). 58:179–90. DOI: 10.1007/s00005-010-0075-0. PMID: 20373146.
50. Miyara M, Sakaguchi S. 2007; Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 13:108–16. DOI: 10.1016/j.molmed.2007.01.003. PMID: 17257897.
51. Wang H, Ying H, Wang S, Gu X, Weng Y, Peng W, et al. 2015; Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 9:330–41. DOI: 10.1111/crj.12147. PMID: 24720797.
52. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. 2017; Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 97:1295–349. DOI: 10.1152/physrev.00036.2016. PMID: 28814613.
53. Zaiss MM, Frey B, Hess A, Zwerina J, Luther J, Nimmerjahn F, et al. 2010; Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 184:7238–46. DOI: 10.4049/jimmunol.0903841. PMID: 20483756.
54. Walsh MC, Choi Y. 2014; Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 5:511. DOI: 10.3389/fimmu.2014.00511. PMID: 25368616. PMCID: PMC4202272.
55. Zhang Z, Yuan W, Deng J, Wang D, Zhang T, Peng L, et al. 2020; Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis. Mol Immunol. 117:110–21. DOI: 10.1016/j.molimm.2019.11.003. PMID: 31765840.
56. Weitzmann MN. 2013; The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013:125705. DOI: 10.1155/2013/125705. PMID: 24278766. PMCID: PMC3820310.
57. Li Y, Terauchi M, Vikulina T, Roser-Page S, Weitzmann MN. 2014; B cell production of both OPG and RANKL is significantly increased in aged mice. Open Bone J. 6:8–17. DOI: 10.2174/1876525401406010008. PMID: 25984250. PMCID: PMC4429037.
58. Meednu N, Zhang H, Owen T, Sun W, Wang V, Cistrone C, et al. 2016; Production of RANKL by memory B cells: a link between B Cells and bone erosion in rheumatoid arthritis. Arthritis Rheumatol. 68:805–16. DOI: 10.1002/art.39489. PMID: 26554541. PMCID: PMC4956406.
59. Ponzetti M, Rucci N. 2019; Updates on osteoimmunology: what's new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne). 10:236. DOI: 10.3389/fendo.2019.00236. PMID: 31057482. PMCID: PMC6482259.
60. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. 2008; Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 181:1232–44. DOI: 10.4049/jimmunol.181.2.1232. PMID: 18606677.
61. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. 2007; Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 117:902–9. DOI: 10.1172/JCI29919. PMID: 17364026. PMCID: PMC1810572.
62. Auffray C, Sieweke MH, Geissmann F. 2009; Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 27:669–92. DOI: 10.1146/annurev.immunol.021908.132557. PMID: 19132917.
63. Sprangers S, de Vries TJ, Everts V. 2016; Monocyte heterogeneity: consequences for monocyte-derived immune cells. J Immunol Res. 2016:1475435. DOI: 10.1155/2016/1475435. PMID: 27478854. PMCID: PMC4958468.
64. Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, et al. 2018; Monocyte-derived extracellular vesicles stimulate cytokine secretion and gene expression of matrix metalloproteinases by mesenchymal stem/stromal cells. FEBS J. 285:2337–59. DOI: 10.1111/febs.14485. PMID: 29732732.
65. Nauseef WM, Borregaard N. 2014; Neutrophils at work. Nat Immunol. 15:602–11. DOI: 10.1038/ni.2921. PMID: 24940954.
66. Scapini P, Cassatella MA. 2014; Social networking of human neutrophils within the immune system. Blood. 124:710–9. DOI: 10.1182/blood-2014-03-453217. PMID: 24923297.
67. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. 2016; Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 28:146–58. DOI: 10.1016/j.smim.2016.02.002. PMID: 26936034. PMCID: PMC4867283.
68. Poubelle PE, Chakravarti A, Fernandes MJ, Doiron K, Marceau AA. 2007; Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res Ther. 9:R25. DOI: 10.1186/ar2137. PMID: 17341304. PMCID: PMC1906801.
69. Fu SC, Wang P, Qi MX, Peng JP, Lin XQ, Zhang CY, et al. 2019; The associations of TNF-α gene polymorphisms with bone mineral density and risk of osteoporosis: a meta-analysis. Int J Rheum Dis. 22:1619–29. DOI: 10.1111/1756-185X.13647. PMID: 31273943.
70. Kotrych D, Dziedziejko V, Safranow K, Sroczynski T, Staniszewska M, Juzyszyn Z, et al. 2016; TNF-α and IL10 gene polymorphisms in women with postmenopausal osteoporosis. Eur J Obstet Gynecol Reprod Biol. 199:92–5. DOI: 10.1016/j.ejogrb.2016.01.037. PMID: 26914399.
71. Weitzmann MN. 2017; Bone and the immune system. Toxicol Pathol. 45:911–24. DOI: 10.1177/0192623317735316. PMID: 29046115. PMCID: PMC5749254.
72. Zha L, He L, Liang Y, Qin H, Yu B, Chang L, et al. 2018; TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother. 102:369–74. DOI: 10.1016/j.biopha.2018.03.080. PMID: 29571022.
73. Osta B, Benedetti G, Miossec P. 2014; Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 5:48. DOI: 10.3389/fimmu.2014.00048. PMID: 24592264. PMCID: PMC3923157.
74. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. 2007; Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 13:156–63. DOI: 10.1038/nm1538. PMID: 17237793.
75. Ohori F, Kitaura H, Marahleh A, Kishikawa A, Ogawa S, Qi J, et al. 2019; Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res. 2019:9716758. DOI: 10.1155/2019/9716758. PMID: 31341915. PMCID: PMC6612957.
76. Tang M, Tian L, Luo G, Yu X. 2018; Interferon-gamma-mediated osteoimmunology. Front Immunol. 9:1508. DOI: 10.3389/fimmu.2018.01508. PMID: 30008722. PMCID: PMC6033972.
77. Ruscitti P, Cipriani P, Carubbi F, Liakouli V, Zazzeroni F, Di Benedetto P, et al. 2015; The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm. 2015:782382. DOI: 10.1155/2015/782382. PMID: 25954061. PMCID: PMC4410538.
78. Lacativa PG, Farias ML. 2010; Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 54:123–32. DOI: 10.1590/S0004-27302010000200007. PMID: 20485900.
79. Lee J, Park C, Kim HJ, Lee YD, Lee ZH, Song YW, et al. 2017; Stimulation of osteoclast migration and bone resorption by C-C chemokine ligands 19 and 21. Exp Mol Med. 49:e358. DOI: 10.1038/emm.2017.100. PMID: 28729639. PMCID: PMC5565950.
80. Abdel Meguid MH, Hamad YH, Swilam RS, Barakat MS. 2013; Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage. Rheumatol Int. 33:697–703. DOI: 10.1007/s00296-012-2375-7. PMID: 22531887.
81. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. 2006; Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441:235–8. DOI: 10.1038/nature04753. PMID: 16648838.
82. Malysheva K, de Rooij K, Lowik CW, Baeten DL, Rose-John S, Stoika R, et al. 2016; Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J. 57:89–98. DOI: 10.3325/cmj.2016.57.89. PMID: 27106351. PMCID: PMC4856197.
83. Hirota K, Hashimoto M, Ito Y, Matsuura M, Ito H, Tanaka M, et al. 2018; Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity. 48:1220–32.e5. DOI: 10.1016/j.immuni.2018.04.009. PMID: 29802020. PMCID: PMC6024031.
84. Kindstedt E, Koskinen Holm C, Palmqvist P, Sjöström M, Lejon K, Lundberg P. 2019; Innate lymphoid cells are present in gingivitis and periodontitis. J Periodontol. 90:200–7. DOI: 10.1002/JPER.17-0750. PMID: 30070705.
85. Wang T, He C. 2020; TNF-α and IL-6: the link between immune and bone system. Curr Drug Targets. 21:213–27. DOI: 10.2174/1389450120666190821161259. PMID: 31433756.
86. Xu S, Cao X. 2010; Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 7:164–74. DOI: 10.1038/cmi.2010.21. PMID: 20383173. PMCID: PMC4002915.
87. Osta B, Lavocat F, Eljaafari A, Miossec P. 2014; Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front Immunol. 5:425. DOI: 10.3389/fimmu.2014.00425. PMID: 25228904. PMCID: PMC4151036.
88. Klavdianou K, Kanellou A, Daoussis D. 2022; Molecular mechanisms of new bone formation in axial spondyloarthritis. Mediterr J Rheumatol. 33(Suppl 1):115–25. DOI: 10.31138/mjr.33.1.115. PMID: 36127924. PMCID: PMC9450187.
89. Seong S, Kim JH, Kim N. 2016; Pro-inflammatory cytokines modulating osteoclast differentiation and function. J Rheum Dis. 23:148–53. DOI: 10.4078/jrd.2016.23.3.148.
90. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. 2012; Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 122:1791–802. DOI: 10.1172/JCI60975. PMID: 22505457. PMCID: PMC3336988.
91. Sun M, Rethi B, Krishnamurthy A, Joshua V, Circiumaru A, Hensvold AH, et al. 2019; Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Ann Rheum Dis. 78:1621–31. DOI: 10.1136/annrheumdis-2018-214967. PMID: 31481351. PMCID: PMC6900251.
92. Kleyer A, Schett G. 2014; Arthritis and bone loss: a hen and egg story. Curr Opin Rheumatol. 26:80–4. DOI: 10.1097/BOR.0000000000000007. PMID: 24276089.
93. Li S, Yu Y, Yue Y, Liao H, Xie W, Thai J, et al. 2016; Autoantibodies from single circulating plasmablasts react with citrullinated antigens and Porphyromonas gingivalis in rheumatoid arthritis. Arthritis Rheumatol. 68:614–26. DOI: 10.1002/art.39455. PMID: 26474325. PMCID: PMC5770231.
94. Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F, et al. 2014; Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 73:854–60. DOI: 10.1136/annrheumdis-2012-202958. PMID: 23520034.
95. Bugatti S, Bogliolo L, Vitolo B, Manzo A, Montecucco C, Caporali R. 2016; Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis. Arthritis Res Ther. 18:226. DOI: 10.1186/s13075-016-1116-9. PMID: 27716332. PMCID: PMC5052789.
96. de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Verpoort KN, Schreuder GM, Ewals JA, Terwiel JP, et al. 2008; Progression of joint damage in early rheumatoid arthritis: association with HLA-DRB1, rheumatoid factor, and anti-citrullinated protein antibodies in relation to different treatment strategies. Arthritis Rheum. 58:1293–8. DOI: 10.1002/art.23439. PMID: 18438829.
97. Bukhari M, Thomson W, Naseem H, Bunn D, Silman A, Symmons D, et al. 2007; The performance of anti-cyclic citrullinated peptide antibodies in predicting the severity of radiologic damage in inflammatory polyarthritis: results from the Norfolk Arthritis Register. Arthritis Rheum. 56:2929–35. DOI: 10.1002/art.22868. PMID: 17763407. PMCID: PMC2435419.
98. Syversen SW, Goll GL, van der Heijde D, Landewé R, Lie BA, Odegård S, et al. 2010; Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann Rheum Dis. 69:345–51. DOI: 10.1136/ard.2009.113092. PMID: 19648126.
99. Martin-Mola E, Balsa A, García-Vicuna R, Gómez-Reino J, González-Gay MA, Sanmartí R, et al. 2016; Anti-citrullinated peptide antibodies and their value for predicting responses to biologic agents: a review. Rheumatol Int. 36:1043–63. DOI: 10.1007/s00296-016-3506-3. PMID: 27271502.
100. Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. 2014; Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev. 13:1114–20. DOI: 10.1016/j.autrev.2014.08.012. PMID: 25182207.
101. Cheng TT, Yu SF, Su FM, Chen YC, Su BY, Chiu WC, et al. 2018; Anti-CCP-positive patients with RA have a higher 10-year probability of fracture evaluated by FRAX®: a registry study of RA with osteoporosis/fracture. Arthritis Res Ther. 20:16. DOI: 10.1186/s13075-018-1515-1. PMID: 29382355. PMCID: PMC5791167.
102. Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. 2021; T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 12:687551. DOI: 10.3389/fimmu.2021.687551. PMID: 34276675. PMCID: PMC8278518.
103. Chen TL, Chang KH, Su KY. 2022; Effects of biological/targeted therapies on bone mineral density in inflammatory arthritis. Int J Mol Sci. 23:4111. DOI: 10.3390/ijms23084111. PMID: 35456929. PMCID: PMC9029148.
104. Miao CG, Yang YY, He X, Li XF, Huang C, Huang Y, et al. 2013; Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal. 25:2069–78. DOI: 10.1016/j.cellsig.2013.04.002. PMID: 23602936.
105. Garnero P, Tabassi NC, Voorzanger-Rousselot N. 2008; Circulating dickkopf-1 and radiological progression in patients with early rheumatoid arthritis treated with etanercept. J Rheumatol. 35:2313–5. DOI: 10.3899/jrheum.080356. PMID: 18843784.
106. Llorente I, García-Castañeda N, Valero C, González-Álvaro I, Castañeda S. 2020; Osteoporosis in rheumatoid arthritis: dangerous liaisons. Front Med (Lausanne). 7:601618. DOI: 10.3389/fmed.2020.601618. PMID: 33330566. PMCID: PMC7719815.
107. Tascioglu F, Oner C, Armagan O. 2003; The effect of low-dose methotrexate on bone mineral density in patients with early rheumatoid arthritis. Rheumatol Int. 23:231–5. DOI: 10.1007/s00296-003-0298-z. PMID: 14504915.
108. Kwon OC, Oh JS, Hong S, Lee CK, Yoo B, Kim YG. 2019; Conventional synthetic disease-modifying antirheumatic drugs and bone mineral density in rheumatoid arthritis patients with osteoporosis: possible beneficial effect of leflunomide. Clin Exp Rheumatol. 37:813–9.
109. Confavreux CB, Chapurlat RD. 2011; Systemic bone effects of biologic therapies in rheumatoid arthritis and ankylosing spondylitis. Osteoporos Int. 22:1023–36. DOI: 10.1007/s00198-010-1462-4. PMID: 20959960.
110. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, et al. 2008; Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58:1299–309. DOI: 10.1002/art.23417. PMID: 18438830.
111. Saidenberg-Kermanac'h N, Corrado A, Lemeiter D, deVernejoul MC, Boissier MC, Cohen-Solal ME. 2004; TNF-alpha antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone. 35:1200–7. DOI: 10.1016/j.bone.2004.07.004. PMID: 15542046.
112. Seriolo B, Ferretti V, Sulli A, Caratto E, Fasciolo D, Cutolo M. 2002; Serum osteocalcin levels in premenopausal rheumatoid arthritis patients. Ann N Y Acad Sci. 966:502–7. DOI: 10.1111/j.1749-6632.2002.tb04254.x. PMID: 12114311.
113. Lange U, Teichmann J, Müller-Ladner U, Strunk J. 2005; Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford). 44:1546–8. DOI: 10.1093/rheumatology/kei082. PMID: 16263785.
114. Orsolini G, Fassio A, Rossini M, Adami G, Giollo A, Caimmi C, et al. 2019; Effects of biological and targeted synthetic DMARDs on bone loss in rheumatoid arthritis. Pharmacol Res. 147:104354. DOI: 10.1016/j.phrs.2019.104354. PMID: 31306774.
115. Seriolo B, Paolino S, Sulli A, Ferretti V, Cutolo M. 2006; Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci. 1069:420–7. DOI: 10.1196/annals.1351.040. PMID: 16855169.
116. Fassio A, Adami G, Gatti D, Orsolini G, Giollo A, Idolazzi L, et al. 2019; Inhibition of tumor necrosis factor-alpha (TNF-alpha) in patients with early rheumatoid arthritis results in acute changes of bone modulators. Int Immunopharmacol. 67:487–9. DOI: 10.1016/j.intimp.2018.12.050. PMID: 30599401.
117. Lories RJ, de Vlam K, Luyten FP. 2010; Are current available therapies disease-modifying in spondyloarthritis? Best Pract Res Clin Rheumatol. 24:625–35. DOI: 10.1016/j.berh.2010.05.005. PMID: 21035084.
118. Lories RJ, Haroon N. 2014; Bone formation in axial spondyloarthritis. Best Pract Res Clin Rheumatol. 28:765–77. DOI: 10.1016/j.berh.2014.10.008. PMID: 25488783.
119. Yasunori K, Masaaki T, Tetsuyuki N, Hayato K, Akira N. 2008; Reduction of urinary levels of pyridinoline and deoxypyridinoline and serum levels of soluble receptor activator of NF-kappaB ligand by etanercept in patients with rheumatoid arthritis. Clin Rheumatol. 27:1093–101. DOI: 10.1007/s10067-008-0870-8. PMID: 18338203.
120. Ziolkowska M, Kurowska M, Radzikowska A, Luszczykiewicz G, Wiland P, Dziewczopolski W, et al. 2002; High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis Rheum. 46:1744–53. DOI: 10.1002/art.10388. PMID: 12124857.
121. Jura-Półtorak A, Szeremeta A, Olczyk K, Zoń-Giebel A, Komosińska-Vassev K. 2021; Bone metabolism and RANKL/OPG ratio in rheumatoid arthritis women treated with TNF-α inhibitors. J Clin Med. 10:2905. DOI: 10.3390/jcm10132905. PMID: 34209821. PMCID: PMC8267676.
122. Hoff M, Kvien TK, Kälvesten J, Elden A, Haugeberg G. 2009; Adalimumab therapy reduces hand bone loss in early rheumatoid arthritis: explorative analyses from the PREMIER study. Ann Rheum Dis. 68:1171–6. DOI: 10.1136/ard.2008.091264. PMID: 18801760. PMCID: PMC2689520.
123. Krieckaert CL, Nurmohamed MT, Wolbink G, Lems WF. 2013; Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology (Oxford). 52:547–53. DOI: 10.1093/rheumatology/kes320. PMID: 23221326.
124. Marotte H, Pallot-Prades B, Grange L, Gaudin P, Alexandre C, Miossec P. 2007; A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res Ther. 9:R61. DOI: 10.1186/ar2219. PMID: 17597527. PMCID: PMC2206336.
125. Vis M, Voskuyl AE, Wolbink GJ, Dijkmans BA, Lems WF. OSTRA Study Group. 2005; Bone mineral density in patients with rheumatoid arthritis treated with infliximab. Ann Rheum Dis. 64:336–7. DOI: 10.1136/ard.2003.017780. PMID: 15647447. PMCID: PMC1755334.
126. Wijbrandts CA, Klaasen R, Dijkgraaf MG, Gerlag DM, van Eck-Smit BL, Tak PP. 2009; Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann Rheum Dis. 68:373–6. DOI: 10.1136/ard.2008.091611. PMID: 18408246. PMCID: PMC2945478.
127. Alenazy MF, Saheb Sharif-Askari F, Omair MA, El-Wetidy MS, Omair MA, Mitwalli H, et al. 2021; Abatacept enhances blood regulatory B cells of rheumatoid arthritis patients to a level that associates with disease remittance. Sci Rep. 11:5629. DOI: 10.1038/s41598-021-83615-0. PMID: 33707483. PMCID: PMC7952390.
128. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. 2005; Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 353:1114–23. DOI: 10.1056/NEJMoa050524. PMID: 16162882.
129. Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, et al. 2008; CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 67:1603–9. DOI: 10.1136/ard.2007.080713. PMID: 18203760.
130. Bozec A, Zaiss MM, Kagwiria R, Voll R, Rauh M, Chen Z, et al. 2014; T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med. 6:235ra60. DOI: 10.1126/scitranslmed.3007764. PMID: 24807557.
131. Okada H, Kajiya H, Omata Y, Matsumoto T, Sato Y, Kobayashi T, et al. 2019; CTLA4-Ig directly inhibits osteoclastogenesis by interfering with intracellular calcium oscillations in bone marrow macrophages. J Bone Miner Res. 34:1744–52. DOI: 10.1002/jbmr.3754. PMID: 31067348.
132. Roser-Page S, Vikulina T, Zayzafoon M, Weitzmann MN. 2014; CTLA-4Ig-induced T cell anergy promotes Wnt-10b production and bone formation in a mouse model. Arthritis Rheumatol. 66:990–9. DOI: 10.1002/art.38319. PMID: 24757150. PMCID: PMC3994890.
133. Nagao N, Wakabayashi H, Miyamura G, Kato S, Naito Y, Sudo A. 2020; CTLA-4Ig improves hyperalgesia in a mouse model of osteoporosis. Int J Mol Sci. 21:9479. DOI: 10.3390/ijms21249479. PMID: 33322156. PMCID: PMC7763121.
134. Bedi B, Li JY, Grassi F, Tawfeek H, Weitzmann MN, Pacifici R. 2010; Inhibition of antigen presentation and T cell costimulation blocks PTH-induced bone loss. Ann N Y Acad Sci. 1192:215–21. DOI: 10.1111/j.1749-6632.2009.05216.x. PMID: 20392239. PMCID: PMC3269765.
135. Kawashiri SY, Endo Y, Nishino A, Okamoto M, Tsuji S, Takatani A, et al. 2021; Effect of abatacept treatment on serum osteoclast-related biomarkers in patients with rheumatoid arthritis (RA): a multicenter RA ultrasound prospective cohort in Japan. Medicine (Baltimore). 100:e26592. DOI: 10.1097/MD.0000000000026592. PMID: 34260539. PMCID: PMC8284735.
136. Kawashiri SY, Endo Y, Nishino A, Okamoto M, Tsuji S, Takatani A, et al. 2021; Association between serum bone biomarker levels and therapeutic response to abatacept in patients with rheumatoid arthritis (RA): a multicenter, prospective, and observational RA ultrasound cohort study in Japan. BMC Musculoskelet Disord. 22:506. DOI: 10.1186/s12891-021-04392-5. PMID: 34074293. PMCID: PMC8171043.
137. Tada M, Inui K, Sugioka Y, Mamoto K, Okano T, Koike T. 2018; Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study. Rheumatol Int. 38:777–84. DOI: 10.1007/s00296-017-3922-z. PMID: 29294175.
138. Chen MH, Yu SF, Chen JF, Chen WS, Liou TL, Chou CT, et al. 2021; Different effects of biologics on systemic bone loss protection in rheumatoid arthritis: an interim analysis of a three-year longitudinal cohort study. Front Immunol. 12:783030. DOI: 10.3389/fimmu.2021.783030. PMID: 34987510. PMCID: PMC8720866.
139. Wunderlich C, Oliviera I, Figueiredo CP, Rech J, Schett G. 2017; Effects of DMARDs on citrullinated peptide autoantibody levels in RA patients-a longitudinal analysis. Semin Arthritis Rheum. 46:709–14. DOI: 10.1016/j.semarthrit.2016.09.011. PMID: 28109618.
140. Jansen DTSL, Emery P, Smolen JS, Westhovens R, Le Bars M, Connolly SE, et al. 2018; Conversion to seronegative status after abatacept treatment in patients with early and poor prognostic rheumatoid arthritis is associated with better radiographic outcomes and sustained remission: post hoc analysis of the AGREE study. RMD Open. 4:e000564. DOI: 10.1136/rmdopen-2017-000564. PMID: 29657830. PMCID: PMC5892779.
141. Kerschbaumer A, Sepriano A, Smolen JS, van der Heijde D, Dougados M, van Vollenhoven R, et al. 2020; Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 79:744–59. DOI: 10.1136/annrheumdis-2019-216656. PMID: 32033937. PMCID: PMC7286044.
142. Humby F, Durez P, Buch MH, Lewis MJ, Rizvi H, Rivellese F, et al. 2021; Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet. 397:305–17. DOI: 10.1016/S0140-6736(20)32341-2. PMID: 33485455.
143. Sun W, Meednu N, Rosenberg A, Rangel-Moreno J, Wang V, Glanzman J, et al. 2018; B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nat Commun. 9:5127. DOI: 10.1038/s41467-018-07626-8. PMID: 30510188. PMCID: PMC6277442.
144. Yeo L, Toellner KM, Salmon M, Filer A, Buckley CD, Raza K, et al. 2011; Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis. 70:2022–8. DOI: 10.1136/ard.2011.153312. PMID: 21742639. PMCID: PMC3184241.
145. Kolomansky A, Kaye I, Ben-Califa N, Gorodov A, Awida Z, Sadovnic O, et al. 2020; Anti-CD20-mediated B cell depletion is associated with bone preservation in lymphoma patients and bone mass increase in mice. Front Immunol. 11:561294. DOI: 10.3389/fimmu.2020.561294. PMID: 33193330. PMCID: PMC7604358.
146. Boumans MJ, Thurlings RM, Yeo L, Scheel-Toellner D, Vos K, Gerlag DM, et al. 2012; Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis. 71:108–13. DOI: 10.1136/annrheumdis-2011-200198. PMID: 22072013.
147. Wheater G, Elshahaly M, Naraghi K, Tuck SP, Datta HK, van Laar JM. 2018; Changes in bone density and bone turnover in patients with rheumatoid arthritis treated with rituximab, results from an exploratory, prospective study. PLoS One. 13:e0201527. DOI: 10.1371/journal.pone.0201527. PMID: 30080871. PMCID: PMC6078302.
148. Axmann R, Böhm C, Krönke G, Zwerina J, Smolen J, Schett G. 2009; Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60:2747–56. DOI: 10.1002/art.24781. PMID: 19714627.
149. Bijlsma JWJ, Welsing PMJ, Woodworth TG, Middelink LM, Pethö-Schramm A, Bernasconi C, et al. 2016; Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 388:343–55. DOI: 10.1016/S0140-6736(16)30363-4. PMID: 27287832.
150. Briot K, Rouanet S, Schaeverbeke T, Etchepare F, Gaudin P, Perdriger A, et al. 2015; The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Joint Bone Spine. 82:109–15. DOI: 10.1016/j.jbspin.2014.10.015. PMID: 25557658.
151. Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, et al. 2012; IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin Arthritis Rheum. 42:131–9. DOI: 10.1016/j.semarthrit.2012.01.004. PMID: 22397953.
152. Kanbe K, Nakamura A, Inoue Y, Hobo K. 2012; Osteoprotegerin expression in bone marrow by treatment with tocilizumab in rheumatoid arthritis. Rheumatol Int. 32:2669–74. DOI: 10.1007/s00296-011-2021-9. PMID: 21789615.
153. Terpos E, Fragiadaki K, Konsta M, Bratengeier C, Papatheodorou A, Sfikakis PP. 2011; Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol. 29:921–5.
154. Abu-Shakra M, Zisman D, Balbir-Gurman A, Amital H, Levy Y, Langevitz P, et al. 2018; Effect of tocilizumab on fatigue and bone mineral density in patients with rheumatoid arthritis. Isr Med Assoc J. 20:239–44.
155. Kume K, Amano K, Yamada S, Kanazawa T, Ohta H, Hatta K, et al. 2014; The effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritis. Rheumatology (Oxford). 53:900–3. DOI: 10.1093/rheumatology/ket468. PMID: 24441151.
156. Chen YM, Chen HH, Huang WN, Liao TL, Chen JP, Chao WC, et al. 2017; Tocilizumab potentially prevents bone loss in patients with anticitrullinated protein antibody-positive rheumatoid arthritis. PLoS One. 12:e0188454. DOI: 10.1371/journal.pone.0188454. PMID: 29155868. PMCID: PMC5695761.
157. Suzuki T, Nakamura Y, Kato H. 2018; Effects of denosumab on bone metabolism and bone mineral density with anti-TNF inhibitors, tocilizumab, or abatacept in osteoporosis with rheumatoid arthritis. Ther Clin Risk Manag. 14:453–9. DOI: 10.2147/TCRM.S156350. PMID: 29535527. PMCID: PMC5840187.
Full Text Links
  • JRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr