1. NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis. and Therapy. 2001; Osteoporosis prevention, diagnosis, and therapy. JAMA. 285:785–95. DOI:
10.1001/jama.285.6.785. PMID:
11176917.
3. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. 2014; The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 29:2520–6. DOI:
10.1002/jbmr.2269. PMID:
24771492. PMCID:
PMC4757905.
4. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O'Malley CD. 2014; Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 9:182. DOI:
10.1007/s11657-014-0182-3. PMID:
24847682.
5. Keller JJ, Kang JH, Lin HC. 2013; Association between osteoporosis and psoriasis: results from the Longitudinal Health Insurance Database in Taiwan. Osteoporos Int. 24:1835–41. DOI:
10.1007/s00198-012-2185-5. PMID:
23052942.
6. Oo WM, Naganathan V, Bo MT, Hunter DJ. 2018; Clinical utilities of quantitative ultrasound in osteoporosis associated with inflammatory rheumatic diseases. Quant Imaging Med Surg. 8:100–13. DOI:
10.21037/qims.2018.02.02. PMID:
29541626. PMCID:
PMC5835660.
9. Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK. 2000; Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum. 43:522–30. DOI:
10.1002/1529-0131(200003)43:3<522::AID-ANR7>3.0.CO;2-Y. PMID:
10728744.
10. Xu S, Wang Y, Lu J, Xu J. 2012; Osteoprotegerin and RANKL in the pathogenesis of rheumatoid arthritis-induced osteoporosis. Rheumatol Int. 32:3397–403. DOI:
10.1007/s00296-011-2175-5. PMID:
22057136.
11. Raterman HG, Lems WF. 2019; Pharmacological management of osteoporosis in rheumatoid arthritis patients: a review of the literature and practical guide. Drugs Aging. 36:1061–72. DOI:
10.1007/s40266-019-00714-4. PMID:
31541358. PMCID:
PMC6884430.
13. Schett G, Saag KG, Bijlsma JW. 2010; From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis. 69:1415–9. DOI:
10.1136/ard.2010.135061. PMID:
20650876.
15. Soós B, Szentpétery Á, Raterman HG, Lems WF, Bhattoa HP, Szekanecz Z. 2022; Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 18:249–57. DOI:
10.1038/s41584-022-00764-w. PMID:
35273387.
16. Fischer V, Haffner-Luntzer M. 2022; Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 123:14–21. DOI:
10.1016/j.semcdb.2021.05.014. PMID:
34024716.
17. Takayanagi H. 2009; Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 5:667–76. DOI:
10.1038/nrrheum.2009.217. PMID:
19884898.
19. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. 2015; T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 74:5–17. DOI:
10.1016/j.cyto.2014.09.011. PMID:
25458968. PMCID:
PMC4416069.
22. Hodge JM, Collier FM, Pavlos NJ, Kirkland MA, Nicholson GC. 2011; M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One. 6:e21462. DOI:
10.1371/journal.pone.0021462. PMID:
21738673. PMCID:
PMC3126821.
24. Schoppet M, Preissner KT, Hofbauer LC. 2002; RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 22:549–53. DOI:
10.1161/01.ATV.0000012303.37971.DA. PMID:
11950689.
25. Zerbini CAF, Clark P, Mendez-Sanchez L, Pereira RMR, Messina OD, Uña CR, et al. 2017; Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int. 28:429–46. DOI:
10.1007/s00198-016-3769-2. PMID:
27796445.
27. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. 2000; TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 106:1481–8. DOI:
10.1172/JCI11176. PMID:
11120755. PMCID:
PMC387259.
28. Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, et al. 2011; Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol. 38:821–7. DOI:
10.3899/jrheum.100089. PMID:
21362762.
29. Liu YY, Long L, Wang SY, Guo JP, Ye H, Cui LF, et al. 2010; Circulating Dickkopf-1 and osteoprotegerin in patients with early and longstanding rheumatoid arthritis. Chin Med J (Engl). 123:1407–12.
30. Bonewald LF. 2013; In: Rosen CJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames. Wiley-Blackwell. 34–41. DOI:
10.1002/9781118453926.ch4.
32. Luckheeram RV, Zhou R, Verma AD, Xia B. 2012; CD4+T cells: differentiation and functions. Clin Dev Immunol. 2012:925135. DOI:
10.1155/2012/925135. PMID:
22474485. PMCID:
PMC3312336.
33. Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, et al. 2017; Melatonin signaling in T cells: functions and applications. J Pineal Res. 62:e12394. DOI:
10.1111/jpi.12394. PMID:
28152213.
34. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. 2014; T helper cells plasticity in inflammation. Cytometry A. 85:36–42. DOI:
10.1002/cyto.a.22348. PMID:
24009159.
35. Hirahara K, Poholek A, Vahedi G, Laurence A, Kanno Y, Milner JD, et al. 2013; Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol. 131:1276–87. DOI:
10.1016/j.jaci.2013.03.015. PMID:
23622118. PMCID:
PMC3677748.
36. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. 2000; T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 408:600–5. DOI:
10.1038/35046102. PMID:
11117749.
37. Belizário JE, Brandão W, Rossato C, Peron JP. 2016; Thymic and postthymic regulation of naïve CD4(+) T-cell lineage fates in humans and mice models. Mediators Inflamm. 2016:9523628. DOI:
10.1155/2016/9523628. PMID:
27313405. PMCID:
PMC4904118.
39. Palmqvist P, Lundberg P, Persson E, Johansson A, Lundgren I, Lie A, et al. 2006; Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J Biol Chem. 281:2414–29. DOI:
10.1074/jbc.M510160200. PMID:
16251181.
42. Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar Mde J, García-Magallanes N, Vibanco-Pérez N. 2014; Th17 cells in autoimmune and infectious diseases. Int J Inflam. 2014:651503. DOI:
10.1155/2014/651503. PMID:
25152827. PMCID:
PMC4137509.
43. Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, et al. 2009; IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem. 108:947–55. DOI:
10.1002/jcb.22326. PMID:
19728295.
44. Oelzner P, Franke S, Lehmann G, Eidner T, Hein G, Wolf G. 2012; The balance between soluble receptors regulating IL-6 trans-signaling is predictive for the RANKL/osteoprotegerin ratio in postmenopausal women with rheumatoid arthritis. Rheumatol Int. 32:199–206. DOI:
10.1007/s00296-010-1606-z. PMID:
20821212.
45. Miossec P, Korn T, Kuchroo VK. 2009; Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–98. DOI:
10.1056/NEJMra0707449. PMID:
19710487.
47. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. 2006; Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 203:2673–82. DOI:
10.1084/jem.20061775. PMID:
17088434. PMCID:
PMC2118166.
48. Dokoupilová E, Aelion J, Takeuchi T, Malavolta N, Sfikakis PP, Wang Y, et al. 2018; Secukinumab after anti-tumour necrosis factor-α therapy: a phase III study in active rheumatoid arthritis. Scand J Rheumatol. 47:276–81. DOI:
10.1080/03009742.2017.1390605. PMID:
29458278.
49. de Rezende LC, Silva IV, Rangel LB, Guimarães MC. 2010; Regulatory T cell as a target for cancer therapy. Arch Immunol Ther Exp (Warsz). 58:179–90. DOI:
10.1007/s00005-010-0075-0. PMID:
20373146.
51. Wang H, Ying H, Wang S, Gu X, Weng Y, Peng W, et al. 2015; Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 9:330–41. DOI:
10.1111/crj.12147. PMID:
24720797.
52. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. 2017; Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 97:1295–349. DOI:
10.1152/physrev.00036.2016. PMID:
28814613.
53. Zaiss MM, Frey B, Hess A, Zwerina J, Luther J, Nimmerjahn F, et al. 2010; Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 184:7238–46. DOI:
10.4049/jimmunol.0903841. PMID:
20483756.
55. Zhang Z, Yuan W, Deng J, Wang D, Zhang T, Peng L, et al. 2020; Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis. Mol Immunol. 117:110–21. DOI:
10.1016/j.molimm.2019.11.003. PMID:
31765840.
56. Weitzmann MN. 2013; The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013:125705. DOI:
10.1155/2013/125705. PMID:
24278766. PMCID:
PMC3820310.
57. Li Y, Terauchi M, Vikulina T, Roser-Page S, Weitzmann MN. 2014; B cell production of both OPG and RANKL is significantly increased in aged mice. Open Bone J. 6:8–17. DOI:
10.2174/1876525401406010008. PMID:
25984250. PMCID:
PMC4429037.
58. Meednu N, Zhang H, Owen T, Sun W, Wang V, Cistrone C, et al. 2016; Production of RANKL by memory B cells: a link between B Cells and bone erosion in rheumatoid arthritis. Arthritis Rheumatol. 68:805–16. DOI:
10.1002/art.39489. PMID:
26554541. PMCID:
PMC4956406.
59. Ponzetti M, Rucci N. 2019; Updates on osteoimmunology: what's new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne). 10:236. DOI:
10.3389/fendo.2019.00236. PMID:
31057482. PMCID:
PMC6482259.
60. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. 2008; Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 181:1232–44. DOI:
10.4049/jimmunol.181.2.1232. PMID:
18606677.
61. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. 2007; Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 117:902–9. DOI:
10.1172/JCI29919. PMID:
17364026. PMCID:
PMC1810572.
63. Sprangers S, de Vries TJ, Everts V. 2016; Monocyte heterogeneity: consequences for monocyte-derived immune cells. J Immunol Res. 2016:1475435. DOI:
10.1155/2016/1475435. PMID:
27478854. PMCID:
PMC4958468.
64. Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, et al. 2018; Monocyte-derived extracellular vesicles stimulate cytokine secretion and gene expression of matrix metalloproteinases by mesenchymal stem/stromal cells. FEBS J. 285:2337–59. DOI:
10.1111/febs.14485. PMID:
29732732.
65. Nauseef WM, Borregaard N. 2014; Neutrophils at work. Nat Immunol. 15:602–11. DOI:
10.1038/ni.2921. PMID:
24940954.
67. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. 2016; Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 28:146–58. DOI:
10.1016/j.smim.2016.02.002. PMID:
26936034. PMCID:
PMC4867283.
68. Poubelle PE, Chakravarti A, Fernandes MJ, Doiron K, Marceau AA. 2007; Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res Ther. 9:R25. DOI:
10.1186/ar2137. PMID:
17341304. PMCID:
PMC1906801.
69. Fu SC, Wang P, Qi MX, Peng JP, Lin XQ, Zhang CY, et al. 2019; The associations of TNF-α gene polymorphisms with bone mineral density and risk of osteoporosis: a meta-analysis. Int J Rheum Dis. 22:1619–29. DOI:
10.1111/1756-185X.13647. PMID:
31273943.
70. Kotrych D, Dziedziejko V, Safranow K, Sroczynski T, Staniszewska M, Juzyszyn Z, et al. 2016; TNF-α and IL10 gene polymorphisms in women with postmenopausal osteoporosis. Eur J Obstet Gynecol Reprod Biol. 199:92–5. DOI:
10.1016/j.ejogrb.2016.01.037. PMID:
26914399.
72. Zha L, He L, Liang Y, Qin H, Yu B, Chang L, et al. 2018; TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother. 102:369–74. DOI:
10.1016/j.biopha.2018.03.080. PMID:
29571022.
74. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. 2007; Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 13:156–63. DOI:
10.1038/nm1538. PMID:
17237793.
75. Ohori F, Kitaura H, Marahleh A, Kishikawa A, Ogawa S, Qi J, et al. 2019; Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res. 2019:9716758. DOI:
10.1155/2019/9716758. PMID:
31341915. PMCID:
PMC6612957.
77. Ruscitti P, Cipriani P, Carubbi F, Liakouli V, Zazzeroni F, Di Benedetto P, et al. 2015; The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm. 2015:782382. DOI:
10.1155/2015/782382. PMID:
25954061. PMCID:
PMC4410538.
79. Lee J, Park C, Kim HJ, Lee YD, Lee ZH, Song YW, et al. 2017; Stimulation of osteoclast migration and bone resorption by C-C chemokine ligands 19 and 21. Exp Mol Med. 49:e358. DOI:
10.1038/emm.2017.100. PMID:
28729639. PMCID:
PMC5565950.
80. Abdel Meguid MH, Hamad YH, Swilam RS, Barakat MS. 2013; Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage. Rheumatol Int. 33:697–703. DOI:
10.1007/s00296-012-2375-7. PMID:
22531887.
81. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. 2006; Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441:235–8. DOI:
10.1038/nature04753. PMID:
16648838.
82. Malysheva K, de Rooij K, Lowik CW, Baeten DL, Rose-John S, Stoika R, et al. 2016; Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J. 57:89–98. DOI:
10.3325/cmj.2016.57.89. PMID:
27106351. PMCID:
PMC4856197.
83. Hirota K, Hashimoto M, Ito Y, Matsuura M, Ito H, Tanaka M, et al. 2018; Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity. 48:1220–32.e5. DOI:
10.1016/j.immuni.2018.04.009. PMID:
29802020. PMCID:
PMC6024031.
84. Kindstedt E, Koskinen Holm C, Palmqvist P, Sjöström M, Lejon K, Lundberg P. 2019; Innate lymphoid cells are present in gingivitis and periodontitis. J Periodontol. 90:200–7. DOI:
10.1002/JPER.17-0750. PMID:
30070705.
87. Osta B, Lavocat F, Eljaafari A, Miossec P. 2014; Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front Immunol. 5:425. DOI:
10.3389/fimmu.2014.00425. PMID:
25228904. PMCID:
PMC4151036.
88. Klavdianou K, Kanellou A, Daoussis D. 2022; Molecular mechanisms of new bone formation in axial spondyloarthritis. Mediterr J Rheumatol. 33(Suppl 1):115–25. DOI:
10.31138/mjr.33.1.115. PMID:
36127924. PMCID:
PMC9450187.
89. Seong S, Kim JH, Kim N. 2016; Pro-inflammatory cytokines modulating osteoclast differentiation and function. J Rheum Dis. 23:148–53. DOI:
10.4078/jrd.2016.23.3.148.
90. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. 2012; Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 122:1791–802. DOI:
10.1172/JCI60975. PMID:
22505457. PMCID:
PMC3336988.
91. Sun M, Rethi B, Krishnamurthy A, Joshua V, Circiumaru A, Hensvold AH, et al. 2019; Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Ann Rheum Dis. 78:1621–31. DOI:
10.1136/annrheumdis-2018-214967. PMID:
31481351. PMCID:
PMC6900251.
93. Li S, Yu Y, Yue Y, Liao H, Xie W, Thai J, et al. 2016; Autoantibodies from single circulating plasmablasts react with citrullinated antigens and Porphyromonas gingivalis in rheumatoid arthritis. Arthritis Rheumatol. 68:614–26. DOI:
10.1002/art.39455. PMID:
26474325. PMCID:
PMC5770231.
94. Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F, et al. 2014; Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 73:854–60. DOI:
10.1136/annrheumdis-2012-202958. PMID:
23520034.
95. Bugatti S, Bogliolo L, Vitolo B, Manzo A, Montecucco C, Caporali R. 2016; Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis. Arthritis Res Ther. 18:226. DOI:
10.1186/s13075-016-1116-9. PMID:
27716332. PMCID:
PMC5052789.
96. de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Verpoort KN, Schreuder GM, Ewals JA, Terwiel JP, et al. 2008; Progression of joint damage in early rheumatoid arthritis: association with HLA-DRB1, rheumatoid factor, and anti-citrullinated protein antibodies in relation to different treatment strategies. Arthritis Rheum. 58:1293–8. DOI:
10.1002/art.23439. PMID:
18438829.
97. Bukhari M, Thomson W, Naseem H, Bunn D, Silman A, Symmons D, et al. 2007; The performance of anti-cyclic citrullinated peptide antibodies in predicting the severity of radiologic damage in inflammatory polyarthritis: results from the Norfolk Arthritis Register. Arthritis Rheum. 56:2929–35. DOI:
10.1002/art.22868. PMID:
17763407. PMCID:
PMC2435419.
98. Syversen SW, Goll GL, van der Heijde D, Landewé R, Lie BA, Odegård S, et al. 2010; Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann Rheum Dis. 69:345–51. DOI:
10.1136/ard.2009.113092. PMID:
19648126.
99. Martin-Mola E, Balsa A, García-Vicuna R, Gómez-Reino J, González-Gay MA, Sanmartí R, et al. 2016; Anti-citrullinated peptide antibodies and their value for predicting responses to biologic agents: a review. Rheumatol Int. 36:1043–63. DOI:
10.1007/s00296-016-3506-3. PMID:
27271502.
100. Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. 2014; Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev. 13:1114–20. DOI:
10.1016/j.autrev.2014.08.012. PMID:
25182207.
101. Cheng TT, Yu SF, Su FM, Chen YC, Su BY, Chiu WC, et al. 2018; Anti-CCP-positive patients with RA have a higher 10-year probability of fracture evaluated by FRAX®: a registry study of RA with osteoporosis/fracture. Arthritis Res Ther. 20:16. DOI:
10.1186/s13075-018-1515-1. PMID:
29382355. PMCID:
PMC5791167.
102. Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. 2021; T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 12:687551. DOI:
10.3389/fimmu.2021.687551. PMID:
34276675. PMCID:
PMC8278518.
103. Chen TL, Chang KH, Su KY. 2022; Effects of biological/targeted therapies on bone mineral density in inflammatory arthritis. Int J Mol Sci. 23:4111. DOI:
10.3390/ijms23084111. PMID:
35456929. PMCID:
PMC9029148.
104. Miao CG, Yang YY, He X, Li XF, Huang C, Huang Y, et al. 2013; Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal. 25:2069–78. DOI:
10.1016/j.cellsig.2013.04.002. PMID:
23602936.
105. Garnero P, Tabassi NC, Voorzanger-Rousselot N. 2008; Circulating dickkopf-1 and radiological progression in patients with early rheumatoid arthritis treated with etanercept. J Rheumatol. 35:2313–5. DOI:
10.3899/jrheum.080356. PMID:
18843784.
106. Llorente I, García-Castañeda N, Valero C, González-Álvaro I, Castañeda S. 2020; Osteoporosis in rheumatoid arthritis: dangerous liaisons. Front Med (Lausanne). 7:601618. DOI:
10.3389/fmed.2020.601618. PMID:
33330566. PMCID:
PMC7719815.
107. Tascioglu F, Oner C, Armagan O. 2003; The effect of low-dose methotrexate on bone mineral density in patients with early rheumatoid arthritis. Rheumatol Int. 23:231–5. DOI:
10.1007/s00296-003-0298-z. PMID:
14504915.
108. Kwon OC, Oh JS, Hong S, Lee CK, Yoo B, Kim YG. 2019; Conventional synthetic disease-modifying antirheumatic drugs and bone mineral density in rheumatoid arthritis patients with osteoporosis: possible beneficial effect of leflunomide. Clin Exp Rheumatol. 37:813–9.
109. Confavreux CB, Chapurlat RD. 2011; Systemic bone effects of biologic therapies in rheumatoid arthritis and ankylosing spondylitis. Osteoporos Int. 22:1023–36. DOI:
10.1007/s00198-010-1462-4. PMID:
20959960.
110. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, et al. 2008; Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58:1299–309. DOI:
10.1002/art.23417. PMID:
18438830.
111. Saidenberg-Kermanac'h N, Corrado A, Lemeiter D, deVernejoul MC, Boissier MC, Cohen-Solal ME. 2004; TNF-alpha antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone. 35:1200–7. DOI:
10.1016/j.bone.2004.07.004. PMID:
15542046.
112. Seriolo B, Ferretti V, Sulli A, Caratto E, Fasciolo D, Cutolo M. 2002; Serum osteocalcin levels in premenopausal rheumatoid arthritis patients. Ann N Y Acad Sci. 966:502–7. DOI:
10.1111/j.1749-6632.2002.tb04254.x. PMID:
12114311.
113. Lange U, Teichmann J, Müller-Ladner U, Strunk J. 2005; Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford). 44:1546–8. DOI:
10.1093/rheumatology/kei082. PMID:
16263785.
114. Orsolini G, Fassio A, Rossini M, Adami G, Giollo A, Caimmi C, et al. 2019; Effects of biological and targeted synthetic DMARDs on bone loss in rheumatoid arthritis. Pharmacol Res. 147:104354. DOI:
10.1016/j.phrs.2019.104354. PMID:
31306774.
115. Seriolo B, Paolino S, Sulli A, Ferretti V, Cutolo M. 2006; Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci. 1069:420–7. DOI:
10.1196/annals.1351.040. PMID:
16855169.
116. Fassio A, Adami G, Gatti D, Orsolini G, Giollo A, Idolazzi L, et al. 2019; Inhibition of tumor necrosis factor-alpha (TNF-alpha) in patients with early rheumatoid arthritis results in acute changes of bone modulators. Int Immunopharmacol. 67:487–9. DOI:
10.1016/j.intimp.2018.12.050. PMID:
30599401.
117. Lories RJ, de Vlam K, Luyten FP. 2010; Are current available therapies disease-modifying in spondyloarthritis? Best Pract Res Clin Rheumatol. 24:625–35. DOI:
10.1016/j.berh.2010.05.005. PMID:
21035084.
119. Yasunori K, Masaaki T, Tetsuyuki N, Hayato K, Akira N. 2008; Reduction of urinary levels of pyridinoline and deoxypyridinoline and serum levels of soluble receptor activator of NF-kappaB ligand by etanercept in patients with rheumatoid arthritis. Clin Rheumatol. 27:1093–101. DOI:
10.1007/s10067-008-0870-8. PMID:
18338203.
120. Ziolkowska M, Kurowska M, Radzikowska A, Luszczykiewicz G, Wiland P, Dziewczopolski W, et al. 2002; High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis Rheum. 46:1744–53. DOI:
10.1002/art.10388. PMID:
12124857.
121. Jura-Półtorak A, Szeremeta A, Olczyk K, Zoń-Giebel A, Komosińska-Vassev K. 2021; Bone metabolism and RANKL/OPG ratio in rheumatoid arthritis women treated with TNF-α inhibitors. J Clin Med. 10:2905. DOI:
10.3390/jcm10132905. PMID:
34209821. PMCID:
PMC8267676.
122. Hoff M, Kvien TK, Kälvesten J, Elden A, Haugeberg G. 2009; Adalimumab therapy reduces hand bone loss in early rheumatoid arthritis: explorative analyses from the PREMIER study. Ann Rheum Dis. 68:1171–6. DOI:
10.1136/ard.2008.091264. PMID:
18801760. PMCID:
PMC2689520.
123. Krieckaert CL, Nurmohamed MT, Wolbink G, Lems WF. 2013; Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology (Oxford). 52:547–53. DOI:
10.1093/rheumatology/kes320. PMID:
23221326.
124. Marotte H, Pallot-Prades B, Grange L, Gaudin P, Alexandre C, Miossec P. 2007; A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res Ther. 9:R61. DOI:
10.1186/ar2219. PMID:
17597527. PMCID:
PMC2206336.
125. Vis M, Voskuyl AE, Wolbink GJ, Dijkmans BA, Lems WF. OSTRA Study Group. 2005; Bone mineral density in patients with rheumatoid arthritis treated with infliximab. Ann Rheum Dis. 64:336–7. DOI:
10.1136/ard.2003.017780. PMID:
15647447. PMCID:
PMC1755334.
126. Wijbrandts CA, Klaasen R, Dijkgraaf MG, Gerlag DM, van Eck-Smit BL, Tak PP. 2009; Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann Rheum Dis. 68:373–6. DOI:
10.1136/ard.2008.091611. PMID:
18408246. PMCID:
PMC2945478.
127. Alenazy MF, Saheb Sharif-Askari F, Omair MA, El-Wetidy MS, Omair MA, Mitwalli H, et al. 2021; Abatacept enhances blood regulatory B cells of rheumatoid arthritis patients to a level that associates with disease remittance. Sci Rep. 11:5629. DOI:
10.1038/s41598-021-83615-0. PMID:
33707483. PMCID:
PMC7952390.
128. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. 2005; Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 353:1114–23. DOI:
10.1056/NEJMoa050524. PMID:
16162882.
129. Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, et al. 2008; CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 67:1603–9. DOI:
10.1136/ard.2007.080713. PMID:
18203760.
130. Bozec A, Zaiss MM, Kagwiria R, Voll R, Rauh M, Chen Z, et al. 2014; T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med. 6:235ra60. DOI:
10.1126/scitranslmed.3007764. PMID:
24807557.
131. Okada H, Kajiya H, Omata Y, Matsumoto T, Sato Y, Kobayashi T, et al. 2019; CTLA4-Ig directly inhibits osteoclastogenesis by interfering with intracellular calcium oscillations in bone marrow macrophages. J Bone Miner Res. 34:1744–52. DOI:
10.1002/jbmr.3754. PMID:
31067348.
132. Roser-Page S, Vikulina T, Zayzafoon M, Weitzmann MN. 2014; CTLA-4Ig-induced T cell anergy promotes Wnt-10b production and bone formation in a mouse model. Arthritis Rheumatol. 66:990–9. DOI:
10.1002/art.38319. PMID:
24757150. PMCID:
PMC3994890.
133. Nagao N, Wakabayashi H, Miyamura G, Kato S, Naito Y, Sudo A. 2020; CTLA-4Ig improves hyperalgesia in a mouse model of osteoporosis. Int J Mol Sci. 21:9479. DOI:
10.3390/ijms21249479. PMID:
33322156. PMCID:
PMC7763121.
134. Bedi B, Li JY, Grassi F, Tawfeek H, Weitzmann MN, Pacifici R. 2010; Inhibition of antigen presentation and T cell costimulation blocks PTH-induced bone loss. Ann N Y Acad Sci. 1192:215–21. DOI:
10.1111/j.1749-6632.2009.05216.x. PMID:
20392239. PMCID:
PMC3269765.
135. Kawashiri SY, Endo Y, Nishino A, Okamoto M, Tsuji S, Takatani A, et al. 2021; Effect of abatacept treatment on serum osteoclast-related biomarkers in patients with rheumatoid arthritis (RA): a multicenter RA ultrasound prospective cohort in Japan. Medicine (Baltimore). 100:e26592. DOI:
10.1097/MD.0000000000026592. PMID:
34260539. PMCID:
PMC8284735.
136. Kawashiri SY, Endo Y, Nishino A, Okamoto M, Tsuji S, Takatani A, et al. 2021; Association between serum bone biomarker levels and therapeutic response to abatacept in patients with rheumatoid arthritis (RA): a multicenter, prospective, and observational RA ultrasound cohort study in Japan. BMC Musculoskelet Disord. 22:506. DOI:
10.1186/s12891-021-04392-5. PMID:
34074293. PMCID:
PMC8171043.
137. Tada M, Inui K, Sugioka Y, Mamoto K, Okano T, Koike T. 2018; Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study. Rheumatol Int. 38:777–84. DOI:
10.1007/s00296-017-3922-z. PMID:
29294175.
138. Chen MH, Yu SF, Chen JF, Chen WS, Liou TL, Chou CT, et al. 2021; Different effects of biologics on systemic bone loss protection in rheumatoid arthritis: an interim analysis of a three-year longitudinal cohort study. Front Immunol. 12:783030. DOI:
10.3389/fimmu.2021.783030. PMID:
34987510. PMCID:
PMC8720866.
139. Wunderlich C, Oliviera I, Figueiredo CP, Rech J, Schett G. 2017; Effects of DMARDs on citrullinated peptide autoantibody levels in RA patients-a longitudinal analysis. Semin Arthritis Rheum. 46:709–14. DOI:
10.1016/j.semarthrit.2016.09.011. PMID:
28109618.
140. Jansen DTSL, Emery P, Smolen JS, Westhovens R, Le Bars M, Connolly SE, et al. 2018; Conversion to seronegative status after abatacept treatment in patients with early and poor prognostic rheumatoid arthritis is associated with better radiographic outcomes and sustained remission: post hoc analysis of the AGREE study. RMD Open. 4:e000564. DOI:
10.1136/rmdopen-2017-000564. PMID:
29657830. PMCID:
PMC5892779.
141. Kerschbaumer A, Sepriano A, Smolen JS, van der Heijde D, Dougados M, van Vollenhoven R, et al. 2020; Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 79:744–59. DOI:
10.1136/annrheumdis-2019-216656. PMID:
32033937. PMCID:
PMC7286044.
142. Humby F, Durez P, Buch MH, Lewis MJ, Rizvi H, Rivellese F, et al. 2021; Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet. 397:305–17. DOI:
10.1016/S0140-6736(20)32341-2. PMID:
33485455.
143. Sun W, Meednu N, Rosenberg A, Rangel-Moreno J, Wang V, Glanzman J, et al. 2018; B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nat Commun. 9:5127. DOI:
10.1038/s41467-018-07626-8. PMID:
30510188. PMCID:
PMC6277442.
144. Yeo L, Toellner KM, Salmon M, Filer A, Buckley CD, Raza K, et al. 2011; Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis. 70:2022–8. DOI:
10.1136/ard.2011.153312. PMID:
21742639. PMCID:
PMC3184241.
145. Kolomansky A, Kaye I, Ben-Califa N, Gorodov A, Awida Z, Sadovnic O, et al. 2020; Anti-CD20-mediated B cell depletion is associated with bone preservation in lymphoma patients and bone mass increase in mice. Front Immunol. 11:561294. DOI:
10.3389/fimmu.2020.561294. PMID:
33193330. PMCID:
PMC7604358.
146. Boumans MJ, Thurlings RM, Yeo L, Scheel-Toellner D, Vos K, Gerlag DM, et al. 2012; Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis. 71:108–13. DOI:
10.1136/annrheumdis-2011-200198. PMID:
22072013.
147. Wheater G, Elshahaly M, Naraghi K, Tuck SP, Datta HK, van Laar JM. 2018; Changes in bone density and bone turnover in patients with rheumatoid arthritis treated with rituximab, results from an exploratory, prospective study. PLoS One. 13:e0201527. DOI:
10.1371/journal.pone.0201527. PMID:
30080871. PMCID:
PMC6078302.
148. Axmann R, Böhm C, Krönke G, Zwerina J, Smolen J, Schett G. 2009; Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60:2747–56. DOI:
10.1002/art.24781. PMID:
19714627.
149. Bijlsma JWJ, Welsing PMJ, Woodworth TG, Middelink LM, Pethö-Schramm A, Bernasconi C, et al. 2016; Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 388:343–55. DOI:
10.1016/S0140-6736(16)30363-4. PMID:
27287832.
150. Briot K, Rouanet S, Schaeverbeke T, Etchepare F, Gaudin P, Perdriger A, et al. 2015; The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Joint Bone Spine. 82:109–15. DOI:
10.1016/j.jbspin.2014.10.015. PMID:
25557658.
151. Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, et al. 2012; IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin Arthritis Rheum. 42:131–9. DOI:
10.1016/j.semarthrit.2012.01.004. PMID:
22397953.
152. Kanbe K, Nakamura A, Inoue Y, Hobo K. 2012; Osteoprotegerin expression in bone marrow by treatment with tocilizumab in rheumatoid arthritis. Rheumatol Int. 32:2669–74. DOI:
10.1007/s00296-011-2021-9. PMID:
21789615.
153. Terpos E, Fragiadaki K, Konsta M, Bratengeier C, Papatheodorou A, Sfikakis PP. 2011; Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol. 29:921–5.
154. Abu-Shakra M, Zisman D, Balbir-Gurman A, Amital H, Levy Y, Langevitz P, et al. 2018; Effect of tocilizumab on fatigue and bone mineral density in patients with rheumatoid arthritis. Isr Med Assoc J. 20:239–44.
155. Kume K, Amano K, Yamada S, Kanazawa T, Ohta H, Hatta K, et al. 2014; The effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritis. Rheumatology (Oxford). 53:900–3. DOI:
10.1093/rheumatology/ket468. PMID:
24441151.
156. Chen YM, Chen HH, Huang WN, Liao TL, Chen JP, Chao WC, et al. 2017; Tocilizumab potentially prevents bone loss in patients with anticitrullinated protein antibody-positive rheumatoid arthritis. PLoS One. 12:e0188454. DOI:
10.1371/journal.pone.0188454. PMID:
29155868. PMCID:
PMC5695761.
157. Suzuki T, Nakamura Y, Kato H. 2018; Effects of denosumab on bone metabolism and bone mineral density with anti-TNF inhibitors, tocilizumab, or abatacept in osteoporosis with rheumatoid arthritis. Ther Clin Risk Manag. 14:453–9. DOI:
10.2147/TCRM.S156350. PMID:
29535527. PMCID:
PMC5840187.