J Cerebrovasc Endovasc Neurosurg.  2022 Dec;24(4):335-340. 10.7461/jcen.2022.E2022.05.001.

Complications and risk factors after digital subtraction angiography: 1-year single-center study

Affiliations
  • 1Department of Neurosurgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Daejeon, Korea
  • 2Department of Neurosurgery, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Korea

Abstract


Objective
Digital subtraction angiography (DSA) is an imaging technique used to diagnose and confirm abnormal lesions of cerebral blood vessels in various situations. Several complications such as cerebral infarction, contrast-induced allergy, and angio-site hematoma or infection can occur after DSA. We investigated complication rates and risk factors related to DSA.
Methods
All patients who underwent DSA at Incheon St. Mary’s Hospital from January to December 2021 were included. Those who underwent emergency DSA due to stroke or who underwent endovascular surgery within 1 week after DSA were excluded. Complications that occurred within 1 week after DSA were included in the study and was classified into three categories (neurologic complications, contrast-induced allergy, and wound complications).
Results
The mean age was 57.7±13.2 years old and the female was dominant at 63.9%. The overall complication rate was 5% (n=20/407). Regarding neurologic complications, the presence of malignancy (p<0.01), and a longer procedure time (>15 minutes, p=0.04) were statistically significant factors. Contrast-induced allergy did not show any statistically significant difference in any parameter. The wound complication rate was higher in men (p=0.02), trans-femoral approach (p=0.02), frequent alcohol drinkers (p=0.04), those taking anticoagulants (p=0.03), and longer procedure time (>15 minutes, p<0.01).
Conclusions
DSA is an invasive diagnostic modality and can cause several complications. Patients with cancer should be more careful about the occurrence of cerebral infarction, and men taking anticoagulants or drinking frequently should be more careful about the occurrence of angio-site hematomas.

Keyword

Digital subtraction angiography (DSA); Ischemic complication; Angio-site complication

Reference

1. Al-Hussain F, Aljafen B, Alhazzani A, Mohammad Y. Incidence of silent ischemic infarct after diagnostic conventional cerebral angiogram. J Coll Physicians Surg Pak. 2021; Mar. 31(3):314–7.
Article
2. Alakbarzade V, Pereira AC. Cerebral catheter angiography and its complications. Pract Neurol. 2018; Oct. 18(5):393–8.
Article
3. Bao L, Zhang S, Gong X, Cui G. Trousseau syndrome related cerebral infarction: clinical manifestations, laboratory findings and radiological features. J Stroke Cerebrovasc Dis. 2020; Sep. 29(9):104891.
4. Radial vs. femoral artery access for procedural success in diagnostic cerebral angiography: a randomized clinical trial. Clin Neuroradiol. 2021; Dec. 31(4):1083–91.
5. Fifi JT, Meyers PM, Lavine SD, Cox V, Silverberg L, Mangla S, et al. Complications of modern diagnostic cerebral angiography in an academic medical center. J Vasc Interv Radiol. 2009; Apr. 20(4):442–7.
Article
6. Ge B, Wei Y. Comparison of transfemoral cerebral angiography and transradial cerebral angiography following a shift in practice during four years at a single center in China. Med Sci Monit. 2020; Mar. 26:e921631.
7. Kato M, Shukuya T, Mori K, Kanemaru R, Honma Y, Nanjo Y, et al. Cerebral infarction in advanced non-small cell lung cancer: a case-control study. BMC Cancer. 2016; Mar. 16:203.
8. Kaufmann TJ, John Huston J III, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007; Jun. 243(3):812–9.
Article
9. Khanna O, Sweid A, Mouchtouris N, Shivashankar K, Xu V, Velagapudi L, et al. Radial artery catheterization for neuroendovascular procedures. Stroke. 2019; Sep. 50(9):2587–90.
Article
10. Khanna O, Velagapudi L, Das S, Sweid A, Mouchtouris N, Al Saiegh F, et al. A comparison of radial versus femoral artery access for acute stroke interventions. J Neurosurg. 2020; Nov. 135(3):727–32.
Article
11. Oneissi M, Sweid A, Tjoumakaris S, Hasan D, Gooch MR, Rosenwasser RH, et al. Access-site complications in transfemoral neuroendovascular procedures: a systematic review of incidence rates and management strategies. Oper Neurosurg (Hagerstown). 2020; Sep. 19(4):353–63.
Article
12. Park JH, Kim DY, Kim JW, Park YS, Seung WB. Efficacy of transradial cerebral angiography in the elderly. J Korean Neurosurg Soc. 2013; Apr. 53(4):213–7.
Article
13. Shen J, Karki M, Jiang T, Zhao B. Complications associated with diagnostic cerebral angiography: a retrospective analysis of 644 consecutive cerebral angiographic cases. Neurol India. 2018; Jul-Aug. 66(4):1154–8.
Article
14. Wilkinson DA, Majmundar N, Catapano JS, Fredrickson VL, Cavalcanti DD, Baranoski JF, et al. Transradial cerebral angiography becomes more efficient than transfemoral angiography: lessons from 500 consecutive angiograms. J Neurointerv Surg. 2022; Apr. 14(4):397–402.
Article
15. Willinsky RA, Taylor SM, terBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Neuroradiology. 2003; May. 227(2):522–8.
Article
Full Text Links
  • JCEN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr