Clin Exp Otorhinolaryngol.  2022 Nov;15(4):310-318. 10.21053/ceo.2022.01004.

The Role of Viruses in the Inception of Chronic Rhinosinusitis

Affiliations
  • 1Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA

Abstract

Chronic rhinosinusitis (CRS) is a complex inflammatory disorder that affects between 2% and 16% of adults in the United States, with estimated healthcare costs between 4 and 12 million USD. Viruses are a common etiologic factor for URIs, are frequently identified in the sinuses of patients with CRS, and trigger CRS exacerbations. Therefore, investigating the role of viruses provides an opportunity to identify their role in the pathogenesis of CRS. In this review, we identified the viruses frequently isolated in patients with CRS, as well as their associated immunologic responses and contributions to inflammation. Rhinovirus, parainfluenza virus, influenza virus, and respiratory syncytial virus are the viruses commonly found in patients with CRS. This information allows us to target pathways early in the pathogenesis of CRS, thereby playing a significant role in slowing the progression of this chronic disease.


Figure

  • Fig. 1. As a virus infects the upper airway epithelial cells, it activates Toll-like receptor 7 (TLR7) and retinoic acid-inducible gene I (RIG-1). These receptors induce the release of type I and type III interferons (IFNs), as well as interleukin (IL)-6 and IL-8 and other cytokines, to promote a Th1 immune response. A Th2 immune response is also induced through the production of IL-4, IL-5, IL-13, and other cytokines. The immune response creates inflammation and airway remodeling. Prolonged inflammation results in airway remodeling, which contributes to chronic rhinosinusitis (CRS) due to disrupted epithelial barrier function. As the epithelium is weak and damaged, viral susceptibility increases, resulting in further CRS and upper respiratory disease exacerbations. Additionally, the environment that results from this immune response also creates a suitable environment for bacterial infection, as the epithelial barrier is weak [28,34,43-45,61,62]. The figure was created with BioRender.com.


Reference

1. Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, Brook I, Ashok Kumar K, Kramper M, et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg. 2015; Apr. 152(2 Suppl):S1–39.
Article
2. Caulley L, Thavorn K, Rudmik L, Cameron C, Kilty SJ. Direct costs of adult chronic rhinosinusitis by using 4 methods of estimation: results of the US Medical Expenditure Panel Survey. J Allergy Clin Immunol. 2015; Dec. 136(6):1517–22.
Article
3. Halawi AM, Smith SS, Chandra RK. Chronic rhinosinusitis: epidemiology and cost. Allergy Asthma Proc. 2013; Jul-Aug. 34(4):328–34.
Article
4. Cho GS, Moon BJ, Lee BJ, Gong CH, Kim NH, Kim YS, et al. High rates of detection of respiratory viruses in the nasal washes and mucosae of patients with chronic rhinosinusitis. J Clin Microbiol. 2013; Mar. 51(3):979–84.
Article
5. Sonkens JW, Harnsberger HR, Blanch GM, Babbel RW, Hunt S. The impact of screening sinus CT on the planning of functional endoscopic sinus surgery. Otolaryngol Head Neck Surg. 1991; Dec. 105(6):802–13.
Article
6. Kamalian S, Avery L, Lev MH, Schaefer PW, Curtin HD, Kamalian S. Nontraumatic head and neck emergencies. Radiographics. 2019; Oct. 39(6):1808–23.
Article
7. Shaikh N, Hoberman A, Kearney DH, Colborn DK, Kurs-Lasky M, Jeong JH, et al. Signs and symptoms that differentiate acute sinusitis from viral upper respiratory tract infection. Pediatr Infect Dis J. 2013; Oct. 32(10):1061–5.
Article
8. Ramadan HH, Farr RW, Wetmore SJ. Adenovirus and respiratory syncytial virus in chronic sinusitis using polymerase chain reaction. Laryngoscope. 1997; Jul. 107(7):923–5.
Article
9. Abshirini H, Makvandi M, Seyyed Ashrafi M, Hamidifard M, Saki N. Prevalence of rhinovirus and respiratory syncytial virus among patients with chronic rhinosinusitis. Jundishapur J Microbiol. 2015; Mar. 8(3):e20068.
Article
10. Jacobs SE, Lamson DM, St George K, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev. 2013; Jan. 26(1):135–62.
Article
11. Willis AL, Calton JB, Calton J, Kim AS, Lee R, Torabzadeh E, et al. RV-C infections result in greater clinical symptoms and epithelial responses compared to RV-A infections in patients with CRS. Allergy. 2020; Dec. 75(12):3264–7.
Article
12. Ryu G, Shin HW. SARS-CoV-2 infection of airway epithelial cells. Immune Netw. 2021; Mar. 21(1):e3.
Article
13. Chang EH, Willis AL, Romanoski CE, Cusanovich DA, Pouladi N, Li J, et al. Rhinovirus infections in individuals with asthma increase ACE2 expression and cytokine pathways implicated in COVID-19. Am J Respir Crit Care Med. 2020; Sep. 202(5):753–5.
Article
14. Onabajo OO, Banday AR, Stanifer ML, Yan W, Obajemu A, Santer DM, et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet. 2020; Dec. 52(12):1283–93.
Article
15. Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, et al. More than smell-COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem Senses. 2020; Oct. 45(7):609–22.
16. Wang H, Song J, Pan L, Yao Y, Deng YK, Wang ZC, et al. The characterization of chronic rhinosinusitis in hospitalized patients with COVID-19. J Allergy Clin Immunol Pract. 2020; Nov-Dec. 8(10):3597–9.
Article
17. Poltronieri P, Sun B, Mallardo M. RNA viruses: RNA roles in pathogenesis, coreplication and viral load. Curr Genomics. 2015; Oct. 16(5):327–35.
Article
18. Bochkov YA, Gern JE. Rhinoviruses and their receptors: implications for allergic disease. Curr Allergy Asthma Rep. 2016; Apr. 16(4):30.
Article
19. Abraham G, Colonno RJ. Many rhinovirus serotypes share the same cellular receptor. J Virol. 1984; Aug. 51(2):340–5.
Article
20. Palmenberg AC, Gern JE. Classification and evolution of human rhinoviruses. Methods Mol Biol. 2015; 1221:1–10.
Article
21. Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015; Apr. 112(17):5485–90.
Article
22. Wiesolek HL, Bui TM, Lee JJ, Dalal P, Finkielsztein A, Batra A, et al. Intercellular adhesion molecule 1 functions as an efferocytosis receptor in inflammatory macrophages. Am J Pathol. 2020; Apr. 190(4):874–85.
Article
23. Stewart MP, Cabanas C, Hogg N. T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J Immunol. 1996; Mar. 156(5):1810–7.
24. Martz E. Lymphocyte function-associated antigen 1 (LFA-1). In : Delves PJ, editor. Encyclopedia of immunology. 2nd ed. San Diego (CA): Academic Press;1998. p. 1607–12.
25. Tan KS, Ong HH, Yan Y, Liu J, Li C, Ong YK, et al. In vitro model of fully differentiated human nasal epithelial cells infected with rhinovirus reveals epithelium-initiated immune responses. J Infect Dis. 2018; Mar. 217(6):906–15.
Article
26. Yeo NK, Jang YJ. Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2010; Feb. 120(2):346–52.
Article
27. Garcia-Sastre A. Influenza virus receptor specificity: disease and transmission. Am J Pathol. 2010; Apr. 176(4):1584–5.
28. Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection: relation to symptom formation and host defense. J Clin Invest. 1998; Feb. 101(3):643–9.
Article
29. Bermejo-Martin JF, Garcia-Arevalo MC, De Lejarazu RO, Ardura J, Eiros JM, Alonso A, et al. Predominance of Th2 cytokines, CXC chemokines and innate immunity mediators at the mucosal level during severe respiratory syncytial virus infection in children. Eur Cytokine Netw. 2007; Sep. 18(3):162–7.
30. Griffiths CD, Bilawchuk LM, McDonough JE, Jamieson KC, Elawar F, Cen Y, et al. IGF1R is an entry receptor for respiratory syncytial virus. Nature. 2020; Jul. 583(7817):615–9.
Article
31. Anderson CS, Chu CY, Wang Q, Mereness JA, Ren Y, Donlon K, et al. CX3CR1 as a respiratory syncytial virus receptor in pediatric human lung. Pediatr Res. 2020; Apr. 87(5):862–7.
Article
32. Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA. Role of type i interferon (IFN) in the respiratory syncytial virus (RSV) immune response and disease severity. Front Immunol. 2019; Mar. 10:566.
Article
33. Saravia J, You D, Shrestha B, Jaligama S, Siefker D, Lee GI, et al. Respiratory syncytial virus disease is mediated by age-variable IL-33. PLoS Pathog. 2015; Oct. 11(10):e1005217.
Article
34. Yoshizumi M, Kimura H, Okayama Y, Nishina A, Noda M, Tsukagoshi H, et al. Relationships between cytokine profiles and signaling pathways (IκB Kinase and p38 MAPK) in parainfluenza virus-infected lung fibroblasts. Front Microbiol. 2010; Nov. 1:124.
Article
35. Ah-Tye C, Schwartz S, Huberman K, Carlin E, Moscona A. Virus-receptor interactions of human parainfluenza viruses types 1, 2 and 3. Microb Pathog. 1999; Nov. 27(5):329–36.
Article
36. Alymova IV, Portner A, Mishin VP, McCullers JA, Freiden P, Taylor GL. Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. Glycobiology. 2012; Feb. 22(2):174–80.
Article
37. Vignola AM, Chanez P, Campbell AM, Pinel AM, Bousquet J, Michel FB, et al. Quantification and localization of HLA-DR and intercellular adhesion molecule-1 (ICAM-1) molecules on bronchial epithelial cells of asthmatics using confocal microscopy. Clin Exp Immunol. 1994; Apr. 96(1):104–9.
Article
38. Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med. 2000; May. 28(9):1379–86.
Article
39. Go GW, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 2012; Mar. 85(1):19–28.
40. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014; Jan. 46(1):51–5.
Article
41. Berger A. Th1 and Th2 responses: what are they. BMJ. 2000; Aug. 321(7258):424.
42. Konnecke M, Burmeister M, Pries R, Boscke R, Bruchhage KL, Ungefroren H, et al. Epithelial-mesenchymal transition in chronic rhinosinusitis: differences revealed between epithelial cells from nasal polyps and inferior turbinates. Arch Immunol Ther Exp (Warsz). 2017; Apr. 65(2):157–73.
Article
43. Lavoie TB, Kalie E, Crisafulli-Cabatu S, Abramovich R, DiGioia G, Moolchan K, et al. Binding and activity of all human alpha interferon subtypes. Cytokine. 2011; Nov. 56(2):282–9.
Article
44. Jaks E, Gavutis M, Uze G, Martal J, Piehler J. Differential receptor subunit affinities of type I interferons govern differential signal activation. J Mol Biol. 2007; Feb. 366(2):525–39.
Article
45. Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol. 2004; Aug. 76(2):314–21.
Article
46. Briscoe J, Guschin D, Rogers NC, Watling D, Muller M, Horn F, et al. JAKs, STATs and signal transduction in response to the interferons and other cytokines. Philos Trans R Soc Lond B Biol Sci. 1996; Feb. 351(1336):167–71.
Article
47. Kerr IM, Costa-Pereira AP, Lillemeier BF, Strobl B. Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Lett. 2003; Jul. 546(1):1–5.
Article
48. Karpusas M, Nolte M, Benton CB, Meier W, Lipscomb WN, Goelz S. The crystal structure of human interferon beta at 2.2-A resolution. Proc Natl Acad Sci U S A. 1997; Oct. 94(22):11813–8.
49. Klaus W, Gsell B, Labhardt AM, Wipf B, Senn H. The three-dimensional high resolution structure of human interferon alpha-2a determined by heteronuclear NMR spectroscopy in solution. J Mol Biol. 1997; Dec. 274(4):661–75.
50. Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR, Hartmann R. Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem. 2009; Jul. 284(31):20869–75.
51. Kim JH, Kim YS, Cho GS, Kim NH, Gong CH, Lee BJ, et al. Human rhinovirus-induced proinflammatory cytokine and interferon-β responses in nasal epithelial cells from chronic rhinosinusitis patients. Allergy Asthma Immunol Res. 2015; Sep. 7(5):489–96.
Article
52. Nakagome K, Bochkov YA, Ashraf S, Brockman-Schneider RA, Evans MD, Pasic TR, et al. Effects of rhinovirus species on viral replication and cytokine production. J Allergy Clin Immunol. 2014; Aug. 134(2):332–41.
Article
53. Hulse KE. Immune mechanisms of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2016; Jan. 16(1):1.
Article
54. Pinto RA, Arredondo SM, Bono MR, Gaggero AA, Diaz PV. T helper 1/T helper 2 cytokine imbalance in respiratory syncytial virus infection is associated with increased endogenous plasma cortisol. Pediatrics. 2006; May. 117(5):e878–86.
Article
55. Hattori S, Shimojo N, Mashimo T, Inoue Y, Ono Y, Kohno Y, et al. Relationship between RANTES polymorphisms and respiratory syncytial virus bronchiolitis in a Japanese infant population. Jpn J Infect Dis. 2011; 64(3):242–5.
Article
56. Semple MG, Dankert HM, Ebrahimi B, Correia JB, Booth JA, Stewart JP, et al. Severe respiratory syncytial virus bronchiolitis in infants is associated with reduced airway interferon gamma and substance P. PLoS One. 2007; Oct. 2(10):e1038.
Article
57. Ye Q, Shao WX, Shang SQ, Pan YX, Shen HQ, Chen XJ. Epidemiological characteristics and immune status of children with respiratory syncytial virus. J Med Virol. 2015; Feb. 87(2):323–9.
58. Kristjansson S, Bjarnarson SP, Wennergren G, Palsdottir AH, Arnadottir T, Haraldsson A, et al. Respiratory syncytial virus and other respiratory viruses during the first 3 months of life promote a local TH2-like response. J Allergy Clin Immunol. 2005; Oct. 116(4):805–11.
Article
59. Skoner DP, Gentile DA, Patel A, Doyle WJ. Evidence for cytokine mediation of disease expression in adults experimentally infected with influenza A virus. J Infect Dis. 1999; Jul. 180(1):10–4.
Article
60. Eloy P, Poirrier AL, De Dorlodot C, Van Zele T, Watelet JB, Bertrand B. Actual concepts in rhinosinusitis: a review of clinical presentations, inflammatory pathways, cytokine profiles, remodeling, and management. Curr Allergy Asthma Rep. 2011; Apr. 11(2):146–62.
Article
61. Ramshaw IA, Ramsay AJ, Karupiah G, Rolph MS, Mahalingam S, Ruby JC. Cytokines and immunity to viral infections. Immunol Rev. 1997; Oct. 159:119–35.
Article
62. Yan Y, Gordon WM, Wang DY. Nasal epithelial repair and remodeling in physical injury, infection, and inflammatory diseases. Curr Opin Otolaryngol Head Neck Surg. 2013; Jun. 21(3):263–70.
Article
63. Tan KS, Yan Y, Ong HH, Chow VT, Shi L, Wang DY. Impact of respiratory virus infections in exacerbation of acute and chronic rhinosinusitis. Curr Allergy Asthma Rep. 2017; Apr. 17(4):24.
Article
64. Hoggard M, Wagner Mackenzie B, Jain R, Taylor MW, Biswas K, Douglas RG. Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017; Jan. 30(1):321–48.
Article
65. Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, et al. CDHR3 asthma-risk genotype affects susceptibility of airway epithelium to rhinovirus C infections. Am J Respir Cell Mol Biol. 2019; Oct. 61(4):450–8.
Article
66. Aujard Y, Fauroux B. Risk factors for severe respiratory syncytial virus infection in infants. Respir Med. 2002; Apr. 96 Suppl B:S9–14.
Article
67. Reed G, Jewett PH, Thompson J, Tollefson S, Wright PF. Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children <5 years old. J Infect Dis. 1997; Apr. 175(4):807–13.
Article
68. Meier CR, Napalkov PN, Wegmuller Y, Jefferson T, Jick H. Population-based study on incidence, risk factors, clinical complications and drug utilisation associated with influenza in the United Kingdom. Eur J Clin Microbiol Infect Dis. 2000; Nov. 19(11):834–42.
Article
69. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, et al. Chronic rhinosinusitis in Europe: an underestimated disease: a GA²LEN study. Allergy. 2011; Sep. 66(9):1216–23.
70. Wolf C. Urban air pollution and health: an ecological study of chronic rhinosinusitis in Cologne, Germany. Health Place. 2002; Jun. 8(2):129–39.
Article
71. Bhattacharyya N. Air quality influences the prevalence of hay fever and sinusitis. Laryngoscope. 2009; Mar. 119(3):429–33.
Article
72. Thilsing T, Rasmussen J, Lange B, Kjeldsen AD, Al-Kalemji A, Baelum J. Chronic rhinosinusitis and occupational risk factors among 20- to 75-year-old Danes: a GA(2) LEN-based study. Am J Ind Med. 2012; Nov. 55(11):1037–43.
73. Kuiper JR, Hirsch AG, Bandeen-Roche K, Sundaresan AS, Tan BK, Schleimer RP, et al. Prevalence, severity, and risk factors for acute exacerbations of nasal and sinus symptoms by chronic rhinosinusitis status. Allergy. 2018; Jun. 73(6):1244–53.
Article
74. Hafner B, Davris S, Riechelmann H, Mann WJ, Amedee RG. Endonasal sinus surgery improves mucociliary transport in severe chronic sinusitis. Am J Rhinol. 1997; Jul-Aug. 11(4):271–4.
Article
75. Dutta M, Ghatak S. Acute exacerbation of chronic rhinosinusitis (AECRS) with orbital complications in an atrophic rhinitis patient: a mere co-incidence. J Clin Diagn Res. 2013; Dec. 7(12):2973–5.
Article
76. Hamilos DL. Pediatric chronic rhinosinusitis. Am J Rhinol Allergy. 2015; Nov-Dec. 29(6):414–20.
Article
77. Wald ER. Sinusitis in children. N Engl J Med. 1992; Jan. 326(5):319–23.
Article
78. Monto AS, Ullman BM. Acute respiratory illness in an American community: the Tecumseh study. JAMA. 1974; Jan. 227(2):164–9.
Article
79. Shapiro GG, Virant FS, Furukawa CT, Pierson WE, Bierman CW. Immunologic defects in patients with refractory sinusitis. Pediatrics. 1991; Mar. 87(3):311–6.
Article
80. Kogutt MS, Swischuk LE. Diagnosis of sinusitis in infants and children. Pediatrics. 1973; Jul. 52(1):121–4.
Article
81. Rachelefsky GS, Siegel SC, Katz RM, Spector SL, Rohr AS. Chronic sinusitis in children. J Allergy Clin Immunol. 1991; Jan. 87(1):219.
82. Khoo SK, Read J, Franks K, Zhang G, Bizzintino J, Coleman L, et al. Upper airway cell transcriptomics identify a major new immunological phenotype with strong clinical correlates in young children with acute wheezing. J Immunol. 2019; Mar. 202(6):1845–58.
Article
83. Hall CB, Powell KR, MacDonald NE, Gala CL, Menegus ME, Suffin SC, et al. Respiratory syncytial viral infection in children with compromised immune function. N Engl J Med. 1986; Jul. 315(2):77–81.
Article
84. Berbers G, Mollema L, van der Klis F, den Hartog G, Schepp R. Antibody responses to respiratory syncytial virus: a cross-sectional serosurveillance study in the Dutch population focusing on infants younger than 2 years. J Infect Dis. 2021; Jul. 224(2):269–78.
Article
85. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; Dec. 380(9859):2095–128.
86. Mochizuki H, Todokoro M, Arakawa H. RS virus-induced inflammation and the intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation. 2009; Aug. 32(4):252–64.
Article
87. Bonville CA, Rosenberg HF, Domachowske JB. Macrophage inflammatory protein-1alpha and RANTES are present in nasal secretions during ongoing upper respiratory tract infection. Pediatr Allergy Immunol. 1999; Feb. 10(1):39–44.
Article
88. Karron RA, Collins PL. Parainfluenza viruses. In : Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia (PA): Lippincott Williams & Wilkins;2007. p. 1497–526.
89. do Carmo Debur M, Raboni SM, Flizikowski FB, Chong DC, Persicote AP, Nogueira MB, et al. Immunohistochemical assessment of respiratory viruses in necropsy samples from lethal non-pandemic seasonal respiratory infections. J Clin Pathol. 2010; Oct. 63(10):930–4.
Article
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr