Korean J Physiol Pharmacol.  2022 Nov;26(6):415-425. 10.4196/kjpp.2022.26.6.415.

Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor

Affiliations
  • 1Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
  • 2Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea

Abstract

Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleepdeprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brainderived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.

Keyword

Brain-derived neurotrophic factor; Flavonoids; Inflammation; Memory; Sleep deprivation

Figure

  • Fig. 1 Experimental protocols for sleep deprivation (SD)-induced memory impairment behaviors and myricetin (MYR) treatment in rats. Rats were divided into groups (n = 6–7 rats/group), then subjected to the indicated experimental protocols. OFT, open-field test; 8-arm RAM task, eight-arm radial maze task.

  • Fig. 2 Results of body weight and food intake analyses of rats subjected to 14 days of sleep deprivation (SD). (A) Body weight and (B) food intake were significantly lower in SD-exposed rats than in saline (SAL)-treated rats (significant main effect of SD exposure vs. control handling). Data are shown as means ± SEM. *p < 0.05 vs. SAL group.

  • Fig. 3 Effects of myricetin (MYR) on the number of errors in the 8-arm RAM task in sleep deprivation (SD)-induced rats. The task was started during the second week after SD, and four trials were performed each day. (A) Comparison of rat performance during the acquisition phase and (B) short-term memory test. 8-arm RAM task, eight-arm radial maze task; WPF, wide platform; SAL, saline; ATI, alprazolam. *p < 0.05, **p < 0.01, ***p < 0.001 vs. SAL group; #p < 0.05, ##p < 0.01 vs. SD group.

  • Fig. 4 The Morris water maze test was used to assess the effects of myricetin (MYR) on spatial learning and memory. Time to escape (latency) from the water onto a submerged platform during acquisition trials, (A) a submerged platform during acquisition trials, (B) swimming speed, (C) percentage of time spent in the target quadrant, (D) percentage of distance traversed in the target quadrant, (E) path efficiency to reach the target zone, and (F) number of entries to the target zone outcome measures. SD, sleep deprivation; SAL, saline; WPF, wide platform; ATI, alprazolam. **p < 0.01 vs. SAL group; #p < 0.05, ##p < 0.01 vs. SD group.

  • Fig. 5 Effects of MYR administration on locomotor activity in the OFT during SD. MYR, myricetin; OFT, open-field test; SAL, saline; WPF, wide platform; ATI, alprazolam.

  • Fig. 6 Effects of myricetin (MYR) on tumor necrosis factor (TNF)-α (A), interleukin (IL)-1β (B), IL-6 (C), IL-8 (D), IL-4 (E), and IL-12 (F) concentrations in the hippocampus of rats exposed to sleep deprivation (SD), determined by ELISA analysis. SAL, saline. *p < 0.05, **p < 0.01, ***p < 0.001 vs. SAL group; #p < 0.05, ##p < 0.01 vs. SD group.

  • Fig. 7 Effects of myricetin (MYR) on the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) mRNA in rats with sleep deprivation (SD)-induced hippocampal impairment. (A) PCR bands on agarose gels and relative intensities are shown. Expression levels of BDNF and TrkB mRNAs were normalized to glyceraldehyde 3-phosphate dehydrogenase mRNA as the internal control, (B) activation of nuclear factor kappa B (NF-κB) in the hippocampus after MYR treatment. Western blot analysis of protein expression levels of NF-κB. SAL, saline; WPF, wide platform; ATI, alprazolam. *p < 0.05, ***p < 0.001 vs. SAL group; #p < 0.05, ##p < 0.01 vs. SD group.


Reference

1. Costa e Silva JA. 2006; Sleep disorders in psychiatry. Metabolism. 55(10 Suppl 2):S40–S44. DOI: 10.1016/j.metabol.2006.07.012. PMID: 16979426. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748441730&origin=inward.
Article
2. Alkadhi K, Zagaar M, Alhaider I, Salim S, Aleisa A. 2013; Neurobiological consequences of sleep deprivation. Curr Neuropharmacol. 11:231–249. DOI: 10.2174/1570159X11311030001. PMID: 24179461. PMCID: PMC3648777. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878630455&origin=inward.
Article
3. Vandekerckhove M, Cluydts R. 2010; The emotional brain and sleep: an intimate relationship. Sleep Med Rev. 14:219–226. DOI: 10.1016/j.smrv.2010.01.002. PMID: 20363166. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953016003&origin=inward.
Article
4. Stickgold R. 1998; Sleep: off-line memory reprocessing. Trends Cogn Sci. 2:484–492. DOI: 10.1016/S1364-6613(98)01258-3. PMID: 21227299. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0032401260&origin=inward.
Article
5. Cohen-Zion M, Shabi A, Levy S, Glasner L, Wiener A. 2016; Effects of partial sleep deprivation on information processing speed in adolescence. J Int Neuropsychol Soc. 22:388–398. DOI: 10.1017/S1355617716000072. PMID: 26892867. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958750146&origin=inward.
Article
6. Feng L, Wu HW, Song GQ, Lu C, Li YH, Qu LN, Chen SG, Liu XM, Chang Q. 2016; Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method. Behav Brain Res. 302:60–68. DOI: 10.1016/j.bbr.2015.12.039. PMID: 26747207. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955322284&origin=inward.
Article
7. Tripathi S, Jha SK. 2016; Short-term total sleep deprivation alters delay-conditioned memory in the rat. Behav Neurosci. 130:325–335. DOI: 10.1037/bne0000136. PMID: 26890247. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958225245&origin=inward.
Article
8. Bjorness TE, Riley BT, Tysor MK, Poe GR. 2005; REM restriction persistently alters strategy used to solve a spatial task. Learn Mem. 12:352–359. DOI: 10.1101/lm.84805. PMID: 15897251. PMCID: PMC1142465. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=21844457634&origin=inward.
Article
9. Simpson N, Dinges DF. 2007; Sleep and inflammation. Nutr Rev. 65(12 Pt 2):S244–S252. DOI: 10.1301/nr.2007.dec.S244-S252. PMID: 18240557.
Article
10. Smith C, Rose GM. 1996; Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol Behav. 59:93–97. DOI: 10.1016/0031-9384(95)02054-3. PMID: 8848497. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0030026699&origin=inward.
Article
11. Suchecki D, Tiba PA, Tufik S. 2002; Hormonal and behavioural responses of paradoxical sleep-deprived rats to the elevated plus maze. J Neuroendocrinol. 14:549–554. DOI: 10.1046/j.1365-2826.2002.00812.x. PMID: 12121491. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036087425&origin=inward.
Article
12. Backhaus J, Junghanns K, Born J, Hohaus K, Faasch F, Hohagen F. 2006; Impaired declarative memory consolidation during sleep in patients with primary insomnia: influence of sleep architecture and nocturnal cortisol release. Biol Psychiatry. 60:1324–1330. DOI: 10.1016/j.biopsych.2006.03.051. PMID: 16876140. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33751543725&origin=inward.
Article
13. Hill S, Tononi G, Ghilardi MF. 2008; Sleep improves the variability of motor performance. Brain Res Bull. 76:605–611. DOI: 10.1016/j.brainresbull.2008.02.024. PMID: 18598851. PMCID: PMC2494731. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=45849144383&origin=inward.
Article
14. Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T. 2009; Sleep deprivation impairs cAMP signalling in the hippocampus. Nature. 461:1122–1125. DOI: 10.1038/nature08488. PMID: 19847264. PMCID: PMC2783639. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70350521148&origin=inward.
Article
15. Fernandes C, Rocha NB, Rocha S, Herrera-Solís A, Salas-Pacheco J, García-García F, Murillo-Rodríguez E, Yuan TF, Machado S, Arias-Carrión O. 2015; Detrimental role of prolonged sleep deprivation on adult neurogenesis. Front Cell Neurosci. 9:140. DOI: 10.3389/fncel.2015.00140. PMID: 25926773. PMCID: PMC4396387. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84927610564&origin=inward.
Article
16. Cordeira J, Kolluru SS, Rosenblatt H, Kry J, Strecker RE, McCarley RW. 2018; Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation. Behav Brain Res. 339:124–129. DOI: 10.1016/j.bbr.2017.11.033. PMID: 29180134. PMCID: PMC5766005. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85035794851&origin=inward.
Article
17. Fu J, Li P, Ouyang X, Gu C, Song Z, Gao J, Han L, Feng S, Tian S, Hu B. 2007; Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats. Neuroscience. 144:1186–1192. DOI: 10.1016/j.neuroscience.2006.10.050. PMID: 17157993. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33846318550&origin=inward.
Article
18. Campbell IG, Guinan MJ, Horowitz JM. 2002; Sleep deprivation impairs long-term potentiation in rat hippocampal slices. J Neurophysiol. 88:1073–1076. DOI: 10.1152/jn.2002.88.2.1073. PMID: 12163556. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036340738&origin=inward.
Article
19. Ravassard P, Pachoud B, Comte JC, Mejia-Perez C, Scoté-Blachon C, Gay N, Claustrat B, Touret M, Luppi PH, Salin PA. 2009; Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep. 32:227–240. DOI: 10.1093/sleep/32.2.227. PMID: 19238810. PMCID: PMC2635587. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=62549124542&origin=inward.
Article
20. Lorton D, Lubahn CL, Estus C, Millar BA, Carter JL, Wood CA, Bellinger DL. 2006; Bidirectional communication between the brain and the immune system: implications for physiological sleep and disorders with disrupted sleep. Neuroimmunomodulation. 13:357–374. DOI: 10.1159/000104864. PMID: 17709958. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548074172&origin=inward.
Article
21. Ma TC, Zhu XZ. 2000; Effects of intrahippocampal infusion of interleukin-6 on passive avoidance and nitrite and prostaglandin levels in the hippocampus in rats. Arzneimittelforschung. 50:227–231. DOI: 10.1055/s-0031-1300190. PMID: 10758772. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034101047&origin=inward.
Article
22. Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ. 1996; Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 203:17–20. DOI: 10.1016/0304-3940(95)12252-4. PMID: 8742036. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0029671172&origin=inward.
Article
23. Motivala SJ. 2011; Sleep and inflammation: psychoneuroimmunology in the context of cardiovascular disease. Ann Behav Med. 42:141–152. DOI: 10.1007/s12160-011-9280-2. PMID: 21604067. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80755140184&origin=inward.
Article
24. Wadhwa M, Kumari P, Chauhan G, Roy K, Alam S, Kishore K, Ray K, Panjwani U. 2017; Sleep deprivation induces spatial memory impairment by altered hippocampus neuroinflammatory responses and glial cells activation in rats. J Neuroimmunol. 312:38–48. DOI: 10.1016/j.jneuroim.2017.09.003. PMID: 28912034. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028995133&origin=inward.
Article
25. Mahboubi S, Nasehi M, Imani A, Sadat-Shirazi MS, Zarrindast MR, Vousooghi N, Noroozian M. 2019; Benefit effect of REM-sleep deprivation on memory impairment induced by intensive exercise in male wistar rats: with respect to hippocampal BDNF and TrkB. Nat Sci Sleep. 11:179–188. DOI: 10.2147/NSS.S207339. PMID: 31576186. PMCID: PMC6767759. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073805389&origin=inward.
26. Li M, Xie Y, Niu K, Li K. 2020; Electroacupuncture ameliorates post-traumatic stress disorder in rats via a mechanism involving the BDNF-TrkB signaling pathway. Cell Mol Biol (Noisy-le-grand). 66:165–170. DOI: 10.14715/cmb/2020.66.3.26. PMID: 32538765. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086622789&origin=inward.
Article
27. Semwal DK, Semwal RB, Combrinck S, Viljoen A. 2016; Myricetin: a dietary molecule with diverse biological activities. Nutrients. 8:90. DOI: 10.3390/nu8020090. PMID: 26891321. PMCID: PMC4772053. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958526856&origin=inward.
Article
28. Kang KA, Wang ZH, Zhang R, Piao MJ, Kim KC, Kang SS, Kim YW, Lee J, Park D, Hyun JW. 2010; Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. Int J Mol Sci. 11:4348–4360. Erratum in: Int J Mol Sci. 2015;16:1482-1483. DOI: 10.3390/ijms16011482. PMID: 25580538. PMCID: PMC4307314. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84920996784&origin=inward.
Article
29. Yao Y, Lin G, Xie Y, Ma P, Li G, Meng Q, Wu T. 2014; Preformulation studies of myricetin: a natural antioxidant flavonoid. Pharmazie. 69:19–26. PMID: 24601218. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893142639&origin=inward.
30. Ramezani M, Darbandi N, Khodagholi F, Hashemi A. 2016; Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease. Neural Regen Res. 11:1976–1980. DOI: 10.4103/1673-5374.197141. PMID: 28197195. PMCID: PMC5270437. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009164626&origin=inward.
Article
31. Sun L, Xu P, Fu T, Huang X, Song J, Chen M, Tian X, Yin H, Han J. 2018; Myricetin against ischemic cerebral injury in rat middle cerebral artery occlusion model. Mol Med Rep. 17:3274–3280. DOI: 10.3892/mmr.2017.8212. PMID: 29257250. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85039751289&origin=inward.
Article
32. Sun ZQ, Meng FH, Tu LX, Sun L. 2019; Myricetin attenuates the severity of seizures and neuroapoptosis in pentylenetetrazole kindled mice by regulating the of BDNF-TrkB signaling pathway and modulating matrix metalloproteinase-9 and GABAA. Exp Ther Med. 17:3083–3091. DOI: 10.3892/etm.2019.7282. PMID: 30906480. PMCID: PMC6425265.
33. Wu S, Yue Y, Peng A, Zhang L, Xiang J, Cao X, Ding H, Yin S. 2016; Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food Funct. 7:2624–2634. DOI: 10.1039/C6FO00419A. PMID: 27171848. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84975466286&origin=inward.
Article
34. Chauhan G, Ray K, Sahu S, Roy K, Jain V, Wadhwa M, Panjwani U, Kishore K, Singh SB. 2016; Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats. Neuroscience. 337:107–116. DOI: 10.1016/j.neuroscience.2016.09.007. PMID: 27623393. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84989229081&origin=inward.
Article
35. Wolkow A, Ferguson SA, Vincent GE, Larsen B, Aisbett B, Main LC. 2015; The impact of sleep restriction and simulated physical firefighting work on acute inflammatory stress responses. PLoS One. 10:e0138128. DOI: 10.1371/journal.pone.0138128. PMID: 26378783. PMCID: PMC4574982. PMID: 52692d0a75d04a9bac8aa4847a6957e2. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945920745&origin=inward.
Article
36. Lee B, Choi Y, Kim H, Kim SY, Hahm DH, Lee HJ, Shim I. 2003; Protective effects of methanol extract of Acori graminei rhizoma and Uncariae Ramulus et Uncus on ischemia-induced neuronal death and cognitive impairments in the rat. Life Sci. 74:435–450. DOI: 10.1016/j.lfs.2003.06.034. PMID: 14609722. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0242606947&origin=inward.
Article
37. Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. 2012; TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation. 9:23. DOI: 10.1186/1742-2094-9-23. PMID: 22277195. PMCID: PMC3298520. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84856078575&origin=inward.
Article
38. Kaur T, Singh H, Mishra R, Manchanda S, Gupta M, Saini V, Sharma A, Kaur G. 2017; Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Mol Cell Biochem. 427:91–101. DOI: 10.1007/s11010-016-2900-1. PMID: 28004351. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006856512&origin=inward.
Article
39. Noorafshan A, Karimi F, Karbalay-Doust S, Kamali AM. 2017; Using curcumin to prevent structural and behavioral changes of medial prefrontal cortex induced by sleep deprivation in rats. EXCLI J. 16:510–520. DOI: 10.17179/excli2017-139. PMID: 28694754. PMCID: PMC5491911. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019573003&origin=inward.
40. Hou J, Shen Q, Wan X, Zhao B, Wu Y, Xia Z. 2019; REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res. 364:167–176. DOI: 10.1016/j.bbr.2019.01.038. PMID: 30779975. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061698322&origin=inward.
Article
41. Kumar A, Singh A. 2007; Protective effect of St. John's wort (Hypericum perforatum) extract on 72-hour sleep deprivation-induced anxiety-like behavior and oxidative damage in mice. Planta Med. 73:1358–1364. DOI: 10.1055/s-2007-990234. PMID: 17918039. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=36048935395&origin=inward.
Article
42. Wadhwa M, Prabhakar A, Ray K, Roy K, Kumari P, Jha PK, Kishore K, Kumar S, Panjwani U. 2017; Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflammation. 14:222. DOI: 10.1186/s12974-017-0998-z. PMID: 29141671. PMCID: PMC5688670. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034118000&origin=inward.
43. Austin PJ, Berglund AM, Siu S, Fiore NT, Gerke-Duncan MB, Ollerenshaw SL, Leigh SJ, Kunjan PA, Kang JW, Keay KA. 2015; Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. J Neuroinflammation. 12:96. DOI: 10.1186/s12974-015-0318-4. PMID: 25986444. PMCID: PMC4506439. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937216679&origin=inward.
Article
44. Abraham J, Johnson RW. 2009; Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res. 12:445–453. DOI: 10.1089/rej.2009.0888. PMID: 20041738. PMCID: PMC2903454. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77649208936&origin=inward.
Article
45. Adzovic L, Lynn AE, D'Angelo HM, Crockett AM, Kaercher RM, Royer SE, Hopp SC, Wenk GL. 2015; Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J Neuroinflammation. 12:63. Erratum in: J Neuroinflammation. 2015;12:142. DOI: 10.1186/s12974-015-0321-9. PMID: 26248591. PMCID: PMC4528348. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938589458&origin=inward.
Article
46. Ramesh V, Nair D, Zhang SX, Hakim F, Kaushal N, Kayali F, Wang Y, Li RC, Carreras A, Gozal D. 2012; Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway. J Neuroinflammation. 9:91. DOI: 10.1186/1742-2094-9-91. PMID: 22578011. PMCID: PMC3411474. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84860812158&origin=inward.
Article
47. Barrientos RM, Sprunger DB, Campeau S, Watkins LR, Rudy JW, Maier SF. 2004; BDNF mRNA expression in rat hippocampus following contextual learning is blocked by intrahippocampal IL-1beta administration. J Neuroimmunol. 155:119–126. DOI: 10.1016/j.jneuroim.2004.06.009. PMID: 15342202. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=4444338123&origin=inward.
Article
48. Guan Z, Fang J. 2006; Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun. 20:64–71. DOI: 10.1016/j.bbi.2005.04.005. PMID: 15922558. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=29144444066&origin=inward.
Article
49. Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, Ikejima T. 2016; Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res. 41:1662–1672. DOI: 10.1007/s11064-016-1881-5. PMID: 26961891. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84960130994&origin=inward.
Article
50. Vasconcelos AR, Yshii LM, Viel TA, Buck HS, Mattson MP, Scavone C, Kawamoto EM. 2014; Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation. 11:85. DOI: 10.1186/1742-2094-11-85. PMID: 24886300. PMCID: PMC4041059. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901942277&origin=inward.
Article
51. Yirmiya R, Goshen I. 2011; Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 25:181–213. DOI: 10.1016/j.bbi.2010.10.015. PMID: 20970492. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78651412528&origin=inward.
Article
52. Hwang L, Ko IG, Jin JJ, Kim SH, Kim CJ, Chang B, Rho JH, Moon EJ, Yi JW. 2019; Dexmedetomidine ameliorates memory impairment in sleep-deprived mice. Anim Cells Syst (Seoul). 23:371–379. DOI: 10.1080/19768354.2019.1688185. PMID: 31853373. PMCID: PMC6913667. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075208221&origin=inward.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr