1. Swerdlow SH, Campo E, Harris NL, et al. 2017; WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon, France:. IARC Press,. 421.
3. Wu D, Sherwood A, Fromm JR, et al. 2012; High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med. 4:134ra63. DOI:
10.1126/scitranslmed.3003656. PMID:
22593176.
Article
4. Wood BL, Winter SS, Dunsmore KP, et al. 2014; T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children's Oncology Group (COG) Study AALL0434. Blood (ASH Annual Meeting Abstracts). 124:1. DOI:
10.1182/blood.V124.21.1.1.
Article
6. Tembhare PR, Chatterjee G, Khanka T, et al. 2021; Eleven-marker 10-color flow cytometric assessment of measurable residual disease for T-cell acute lymphoblastic leukemia using an approach of exclusion. Cytometry B Clin Cytom. 100:421–33. DOI:
10.1002/cyto.b.21939. PMID:
32812702.
Article
7. Tembhare PR, Narula G, Khanka T, et al. 2020; Post-induction measurable residual disease using multicolor flow cytometry is strongly predictive of inferior clinical outcome in the real-life management of childhood T-cell acute lymphoblastic leukemia: a study of 256 patients. Front Oncol. 10:577. DOI:
10.3389/fonc.2020.00577. PMID:
32391267. PMCID:
PMC7193086. PMID:
0c471dc5b20a4712ab1ed07e20b61c8a.
Article
8. Modvig S, Madsen HO, Siitonen SM, et al. 2019; Minimal residual disease quantification by flow cytometry provides reliable risk stratification in T-cell acute lymphoblastic leukemia. Leukemia. 33:1324–36. DOI:
10.1038/s41375-018-0307-6. PMID:
30552401.
Article
9. Thörn I, Forestier E, Botling J, et al. 2011; Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi‐centre study comparing real‐time polymerase chain reaction and multicolour flow cytometry. Br J Haematol. 152:743–53. DOI:
10.1111/j.1365-2141.2010.08456.x. PMID:
21250970.
Article
10. Gudapati P, Khanka T, Chatterjee G, et al. 2020; CD304/neuropilin‐1 is a very useful and dependable marker for the measurable residual disease assessment of B‐cell precursor acute lymphoblastic leukemia. Cytometry B Clin Cytom. 98:328–35. DOI:
10.1002/cyto.b.21866. PMID:
31944572.
Article
11. Manabe A, Ohara A, Hasegawa D, et al. 2008; Significance of the complete clearance of peripheral blasts after 7 days of prednisolone treatment in children with acute lymphoblastic leukemia: the Tokyo Children's Cancer Study Group Study L99-15. Haematologica. 93:1155–60. DOI:
10.3324/haematol.12365. PMID:
18519521.
Article
12. Cherian T, John R, Joseph LL, et al. 2021; Complete peripheral blast clearance is superior to the conventional cut-off of 1000/µL in predicting relapse in pediatric pre-B acute lymphoblastic leukemia. Indian J Hematol Blood Transfus. 37:366–71. DOI:
10.1007/s12288-020-01354-0. PMID:
34267453. PMCID:
PMC8239084.
Article
13. Bommannan BKK, Arumugam JR, Sundersingh S, Rajan PT, Radhakrishnan V, Sagar TG. 2019; CD19 negative and dim precursor B-lineage acute lymphoblastic leukemias: real-world challenges in a targeted-immunotherapy era. Leuk Lymphoma. 60:3154–60. DOI:
10.1080/10428194.2019.1625043. PMID:
31184238.
Article
14. Dworzak MN, Buldini B, Gaipa G, et al. 2018; AIEOP‐BFM consensus guidelines 2016 for flow cytometric immunophenotyping of pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom. 94:82–93. DOI:
10.1002/cyto.b.21518. PMID:
28187514.
Article
15. Chopra A, Bakhshi S, Pramanik SK, et al. 2014; Immunophenotypic analysis of T‐acute lymphoblastic leukemia. A CD 5‐based ETP‐ALL perspective of non‐ETP T‐ALL. Eur J Haematol. 92:211–8. DOI:
10.1111/ejh.12238. PMID:
24329989.
Article
16. Sędek Ł, Theunissen P, Sobral da Costa E, et al. 2019; Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia. J Immunol Methods. 475:112429. DOI:
10.1016/j.jim.2018.03.005. PMID:
29530508.
Article
18. Neumann M, Heesch S, Gökbuget N, et al. 2012; Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations. Blood Cancer J. 2:e55. DOI:
10.1038/bcj.2011.49. PMID:
22829239. PMCID:
PMC3270253.
Article
22. Liao HY, Sun ZY, Wang YX, Jin YM, Zhu HL, Jiang NG. 2019; Outcome of 126 adolescent and adult T-cell acute leukemia/lymphoma patients and the prognostic significance of early T-cell precursor leukemia subtype. Zhonghua Xue Ye Xue Za Zhi. 40:561–7. DOI:
10.3760/cma.j.issn.0253-2727.2019.07.005. PMID:
32397018. PMCID:
PMC7364909.
23. Ma M, Wang X, Tang J, et al. 2012; Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 6:416–20. DOI:
10.1007/s11684-012-0224-4. PMID:
23065427.
Article
24. Montero I, Rios E, Parody R, Perez-Hurtado JM, Martin-Noya A, Rodriguez JM. 2003; CD56 in T-cell acute lymphoblastic leukaemia: a malignant transformation of an early myeloid-lymphoid progenitor? Haematologica. 88:ELT26. PMID:
12857578.
25. Fischer L, Gökbuget N, Schwartz S, et al. 2009; CD56 expression in T-cell acute lymphoblastic leukemia is associated with non-thymic phenotype and resistance to induction therapy but no inferior survival after risk-adapted therapy. Haematologica. 94:224–9. DOI:
10.3324/haematol.13543. PMID:
19109214. PMCID:
PMC2635409.
Article
26. Fuhrmann S, Schabath R, Möricke A, et al. 2018; Expression of CD56 defines a distinct subgroup in childhood T‐ALL with inferior outcome. Results of the ALL‐BFM 2000 trial. Br J Haematol. 183:96–103. DOI:
10.1111/bjh.15503. PMID:
30028023.
Article
27. Dalmazzo LF, Jácomo RH, Marinato AF, et al. 2009; The presence of CD56/CD16 in T‐cell acute lymphoblastic leukaemia correlates with the expression of cytotoxic molecules and is associated with worse response to treatment. Br J Haematol. 144:223–9. DOI:
10.1111/j.1365-2141.2008.07457.x. PMID:
19016721.
Article
28. Garg S, Gupta SK, Bakhshi S, Mallick S, Kumar L. 2019; ETP-ALL with aberrant B marker expression: case series and a brief review of literature. Int J Lab Hematol. 41:e32–7. DOI:
10.1111/ijlh.12942. PMID:
30407727.
Article
29. Roshal M, Fromm JR, Winter S, Dunsmore K, Wood BL. 2010; Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B Clin Cytom. 78:139–46. DOI:
10.1002/cyto.b.20511. PMID:
20155852. PMCID:
PMC3025860.
Article
30. Singh N, Agrawal N, Sood R, et al. 2019; T-ALL minimal residual disease using a simplified gating strategy and its clinico-hematologic correlation: a single center experience from North India. Indian J Hematol Blood Transfus. 35:707–10. DOI:
10.1007/s12288-019-01106-9. PMID:
31741623. PMCID:
PMC6825102.
Article
31. Tembhare PR, Sriram H, Khanka T, et al. 2020; Flow cytometric evaluation of CD38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-CD38 immunotherapy. J Immunother Cancer. 8:e000630. DOI:
10.1136/jitc-2020-000630. PMID:
32439800. PMCID:
PMC7247386. PMID:
8e0cf6b29323454fb32aa2e1c341589b.
Article
33. Conter V, Valsecchi MG, Buldini B, et al. 2016; Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 3:e80–6. DOI:
10.1016/S2352-3026(15)00254-9. PMID:
26853647.
Article
34. Inukai T, Kiyokawa N, Campana D, et al. 2012; Clinical significance of early T‐cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children's Cancer Study Group Study L99‐15. Br J Haematol. 156:358–65. DOI:
10.1111/j.1365-2141.2011.08955.x. PMID:
22128890.