Neonatal Med.  2022 Aug;29(3):112-116. 10.5385/nm.2022.29.3.112.

A Korean Child with Schaaf-Yang Syndrome Presented with Hearing Impairment: A Case Report

Affiliations
  • 1Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
  • 2Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
  • 3Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea

Abstract

Schaaf-Yang syndrome (SYS) is a rare genomic imprinting disorder caused by truncating mutations in the paternally derived MAGE family member L2 (MAGEL2) allele. It is also responsible for Prader-Willi syndrome, characterized by neonatal hypotonia, developmental delay, intellectual disability, respiratory distress in early infancy, and arthrogryposis. More than 250 individuals with approximately 57 different molecular variants have been reported since 2013, but the phenotype-genotype association in SYS is not yet fully understood. Here, we describe the case of a Korean patient diagnosed with SYS harboring a mutation in the paternal allele of MAGEL2: c.2895G>A, resulting in a protein change of p.Trp965*. The patient’s phenotype included respiratory distress, arthrogryposis, hypotonia, and feeding difficulty in the early neonatal period. Mild renal dysfunction and hearing impairment were observed during infancy.

Keyword

Schaaf-Yang syndrome; MAGEL2; Respiratory distress; Hearing impairment

Figure

  • Figure 1. DNA electropherogram of allele-specific polymerase chain reaction and sequencing results of the patient using single nucleotide polymorphism (rs9785). Maternal allele (top), paternal allele (bottom) which harbors MAGE family member L2 (MAGEL2) variant (NM_019066.5:c.2895G>A).


Reference

1. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet. 2013; 45:1405–8.
2. Schaaf CP, Marbach F. Schaaf-Yang syndrome. In : Adam MP, Mirzaa GM, Pagon RA, Wallace SE, editors. GeneReviews [Internet]. Seattle: University of Washington, Seattle;1993-2022. [cited 2022 Aug 9]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567492.
3. McCarthy J, Lupo PJ, Kovar E, Rech M, Bostwick B, Scott D, et al. Schaaf-Yang syndrome overview: report of 78 individuals. Am J Med Genet A. 2018; 176:2564–74.
4. Tacer KF, Potts PR. Cellular and disease functions of the Prader-Willi syndrome gene MAGEL2. Biochem J. 2017; 474:2177–90.
5. Ahn H, Seo GH, Oh A, Lee Y, Keum C, Heo SH, et al. Diagnosis of Schaaf-Yang syndrome in Korean children with developmental delay and hypotonia. Medicine (Baltimore). 2020; 99:e23864.
6. Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R, et al. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet. 2021; 58:609–18.
7. Matuszewska KE, Badura-Stronka M, Smigiel R, Cabala M, Biernacka A, Kosinska J, et al. Phenotype of two Polish patients with Schaaf-Yang syndrome confirmed by identifying mutation in MAGEL2 gene. Clin Dysmorphol. 2018; 27:49–52.
8. Smigiel R, Biela M, Szmyd K, Bloch M, Szmida E, Skiba P, et al. Rapid whole-exome sequencing as a diagnostic tool in a neonatal/pediatric intensive care unit. J Clin Med. 2020; 9:2220.
9. Ferguson-Smith MA. Autosomal polymorphisms. Birth Defects Orig Artic Ser. 1974; 10:19–29.
10. Collodel G, Moretti E, Capitani S, Piomboni P, Anichini C, Estenoz M, et al. TEM, FISH and molecular studies in infertile men with pericentric inversion of chromosome 9. Andrologia. 2006; 38:122–7.
11. Sipek A Jr, Mihalova R, Panczak A, Hrckova L, Janashia M, Kasprikova N, et al. Heterochromatin variants in human karyo-types: a possible association with reproductive failure. Reprod Biomed Online. 2014; 29:245–50.
12. Napolitano L, Barone B, Morra S, Celentano G, La Rocca R, Capece M, et al. Hypogonadism in patients with Prader Willi syndrome: a narrative review. Int J Mol Sci. 2021; 22:1993.
13. Kim B, Park Y, Cho SI, Kim MJ, Chae JH, Kim JY, et al. Clinical utility of methylation-specific multiplex ligation-dependent probe amplification for the diagnosis of Prader-Willi syndrome and Angelman syndrome. Ann Lab Med. 2022; 42:79–88.
14. Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, et al. Expression and imprinting of MAGEL2 suggest a role in Prader-Willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000; 9:1813–9.
Full Text Links
  • NM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr