1. Weintraub D, Comella CL, Horn S. Parkinson’s disease: Part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care. 2008; 14(2 Suppl):S40–8.
2. Goetz CG, Poewe W, Rascol O, Sampaio C. Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord. 2005; 20(5):523–39.
https://doi.org/10.1002/mds.20464.
Article
4. Perry B, Herrington W, Goldsack JC, Grandinetti CA, Vasisht KP, Landray MJ, et al. Use of mobile devices to measure outcomes in clinical research, 2010–2016: a systematic literature review. Digit Biomark. 2018; 2(1):11–30.
https://doi.org/10.1159/000486347.
Article
5. Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, et al. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput. 2019; 74:255–63.
https://doi.org/10.1016/j.asoc.2018.10.022.
Article
7. Haq AU, Li JP, Memon MH, Malik A, Ahmad T, Ali A, et al. Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings. IEEE Access. 2019; 7:37718–34.
https://doi.org/10.1109/ACCESS.2019.2906350.
Article
8. Almeida JS, Reboucas Filho PP, Carneiro T, Wei W, Damasevicius R, Maskeliunas R, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognit Lett. 2019; 125:55–62.
https://doi.org/10.1016/j.patrec.2019.04.005.
Article
9. Berus L, Klancnik S, Brezocnik M, Ficko M. Classifying Parkinson’s disease based on acoustic measures using artificial neural networks. Sensors (Basel). 2018; 19(1):16.
https://doi.org/10.3390/s19010016.
Article
10. Benba A, Jilbab A, Hammouch A. Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson’s disease and healthy people. Int J Speech Technol. 2016; 19(3):449–56.
https://doi.org/10.1007/s10772-016-9338-4.
Article
14. Wong SL, Gilmour HL, Ramage-Morin PL. Parkinson’s disease: prevalence, diagnosis and impact. Health Rep. 2014; 25(11):10–4.
15. Bonet-Sola D, Alsina-Pages RM. A comparative survey of feature extraction and machine learning methods in diverse acoustic environments. Sensors (Basel). 2021; 21(4):1274.
https://doi.org/10.3390/s21041274.
Article
16. Giannakopoulos T, Pikrakis A. Introduction to audio analysis: a MATLAB approach. Kidlington, UK: Academic Press;2014.
18. Tougui I, Jilbab A, Mhamdi JE. Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications. Healthc Inform Res. 2021; 27(3):189–99.
https://doi.org/10.4258/hir.2021.27.3.189.
19. Kotsiantis SB, Kanellopoulos D, Pintelas PE. Data preprocessing for supervised leaning. Int J Comput Sci. 2006; 1(2):111–7.
22. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012; 13(2):281–305.
24. Virbel M, Hansen T, Lobunets O. Kivy: a framework for rapid creation of innovative user interfaces. In : Workshop-Proceedings der Tagung Mensch & Computer 2011; 2011 Sep 11–14; Chemnitz, Germany. p. 69–73.
28. Django: the web framework for perfectionists with deadlines [Internet]. [place unknown]: Django Software Foundation;c2022. [cited at 2022 Jul 20]. Available from:
https://www.djangoproject.com/.
29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011; 12:2825–30.