1. Parkinson J. An essay on the shaking palsy. London, UK: Sherwood, Neely and Jones;1817.
2. Parkinson J. An essay on the shaking palsy 1817. J Neuropsychiatry Clin Neurosci. 2002; 14(2):223–36.
3. Charcot JM. Lecon sur les maladies du systeme nerveux faites. Lesson on disease of the nervous system. Paris, France: Aux bureaux du Progres Medical;1872.
4. Charcot JM. Lectures on the diseases of the nervous system: delivered at La Salpetriere. London, UK: The New Sydenham Society;1877.
5. Brissaud E, Meige H. Lecons sur les maladies nerveuses (Salpetriere, 1893–1894). Paris, France: G. Masson;1895.
6. Heisters D. Parkinson’s: symptoms, treatments and research. Br J Nurs. 2011; 20(9):548–54.
Article
7. Miller N, Allcock L, Jones D, Noble E, Hildreth AJ, Burn DJ. Prevalence and pattern of perceived intelligibility changes in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007; 78(11):1188–90.
Article
8. Ho AK, Iansek R, Marigliani C, Bradshaw JL, Gates S. Speech impairment in a large sample of patients with Parkinson’s disease. Behav Neurol. 1998; 11(3):131–7.
Article
9. Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng. 2010; 57(4):884–93.
Article
10. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng. 2009; 56(4):1015.
Article
11. Benba A, Jilbab A, Hammouch A, Sandabad S. Voice-prints analysis using MFCC and SVM for detecting patients with Parkinson’s disease. In : Proceedings of 2015 International conference on electrical and information technologies (ICEIT); 2015 Mar 25–27; Marrakech, Morocco. p. 300–4.
Article
12. Hemmerling D, Sztaho D. Parkinson’s disease classification based on vowel sound. In : Proceedings of the 11th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications; 2019 Dec 17–19; Firenze, Italy.
14. Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data. 2016; 3:160011.
Article
15. Giannakopoulos T, Pikrakis A. Introduction to audio analysis: a MATLAB approach. San Diego (CA): Academic Press;2014.
16. Giannakopoulos T. pyAudioAnalysis: an open-source python library for audio signal analysis. PLoS One. 2015; 10(12):e0144610.
Article
17. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011; 12:2825–30.
18. Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014; 40(1):16–28.
Article
19. Singh S, Xu W. Robust detection of Parkinson’s disease using harvested smartphone voice data: a telemedicine approach. Telemed J E Health. 2020; 26(3):327–34.
Article