Korean J Orthod.  2022 Jul;52(4):258-267. 10.4041/kjod21.126.

Validation of three-dimensional digital model superimpositions based on palatal structures in patients with maximum anterior tooth retraction following premolar extraction

Affiliations
  • 1Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
  • 2BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea

Abstract


Objective
This study aimed to evaluate the superimposition accuracy of digital modes for measuring tooth movement in patients requiring anterior retraction after premolar extraction based on the proposed reference regions.
Methods
Forty patients treated with bilateral maxillary first premolar extraction were divided into two groups: moderate retraction (< 7.0 mm) and maximum retraction (≥ 7.0 mm). Central incisor displacement was measured using cephalometric superimpositions and three-dimensional (3D) digital superimpositions with the 3rd or 4th ruga as the reference point. The Wilcoxon signed-rank test and linear regression analyses were performed to test the significance of the differences and relationships between the two measurement techniques.
Results
In the moderate retraction group, the central incisor anteroposterior displacement values did not differ significantly between 3D digital and cephalometric superimpositions. However, in the maximum-retraction group, significant differences were observed between the anteroposterior displacement evaluated by the 3rd ruga superimposition and cephalometric methods (p < 0.05).
Conclusions
This study demonstrated that 3D digital superimpositions were clinically as reliable as cephalometric superimpositions in assessing tooth movements in patients requiring moderate retraction. However, the reference point should be carefully examined in patients who require maximum retraction.

Keyword

Digital models; Cephalometrics; Dental cast analysis; Palatal ruga

Figure

  • Figure 1 Reference co-ordinate system for measuring the amount of tooth movements. A and B, Reference co-ordinate system for cephalometric superimposition. A, X-axis: a line through the maxillary central incisor tip and the mesio-buccal cusp tip of the first maxillary molar on the initial cephalogram. Y-axis: plane perpendicular to X-axis through Sella. B, Superimposition of the maxilla along the palatal plane registered at anterior nasal spine (ANS). C and D, Reference co-ordination system for three-dimensional digital superimposition. The green box is the occlusion plane perpendicular to midpalatal raphe, which passes through tip of the central incisor and mesio-buccal cusp tip of the first maxillary molars. The green, blue, and red arrows indicate the X, Y, and Z axes, respectively. C, Occlusal view. D, Sagittal view. PNS, posterior nasal spine.

  • Figure 2 Definition of landmarks for the superimposition of three-dimensional digital model. A, Superimposition using third ruga: medial 1/2 of third ruga and the following regional palatal vault. B, Superimposition using fourth ruga: medial 1/2 of fourth ruga and the following regional palatal vault. Palatal vault region, Anterior border line - the line connecting the interdental contact points between the 2nd premolar and 1st molar on either side. Posterior border line - the line connecting the interdental contact points between the 1st and 2nd molars on either side. Lateral border line - the anteroposteior lines are 10 mm away from the lines in contact with the palatal gingival margins of the posterior teeth and parallel to occlusal line through central groove of the posterior teeth bilaterally.

  • Figure 3 In maximum retraction case, change of the ruga and digital superimposition. A, Pre-treatment. B, Post-treatment. C and D, Tooth movement of superimposed three-dimensional models in the maximum retraction case. C, Superimposition using the third ruga. D, Superimposition using the fourth ruga.

  • Figure 4 Scattergrams and regression lines for the central incisor movements measured on the cephalogram and three-dimensional digital model. A, B, C and D, in the moderate retraction group. E, F, G and H, in the maximum retraction group. A and E, Horizontal movements of central incisor (Xd). X-axis: cephalometric superimposition (Xd_ceph); Y-axis: 3rd ruga digital superimposition (Xd_3rdR); B and F, Horizontal movements of central incisor. X-axis: cephalometric superimposition; Y-axis: 4th ruga digital superimposition (Xd_4thR); C and G, vertical movements of central incisor (Yd). X-axis: cephalometric superimposition (Yd_ceph); Y-axis: 3rd ruga digital superimposition (Yd_3rdR); D and H, vertical movements of central incisor. X-axis: cephalometric superimposition; Y-axis: 4th ruga digital superimposition (Yd_4thR).


Reference

1. Horton HM, Miller JR, Gaillard PR, Larson BE. 2010; Technique comparison for efficient orthodontic tooth measurements using digital models. Angle Orthod. 80:254–61. DOI: 10.2319/041709-219.1. PMID: 19905849. PMCID: PMC8973218. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=73349088167&origin=inward.
2. Keating AP, Knox J, Bibb R, Zhurov AI. 2008; A comparison of plaster, digital and reconstructed study model accuracy. J Orthod. 35:191–201. discussion 175DOI: 10.1179/146531207225022626. PMID: 18809782. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=54049092526&origin=inward.
3. Mullen SR, Martin CA, Ngan P, Gladwin M. 2007; Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofacial Orthop. 132:346–52. DOI: 10.1016/j.ajodo.2005.08.044. PMID: 17826603. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548419317&origin=inward.
4. Garino F, Garino GB. 2004; Digital treatment objectives: procedure and clinical application. Prog Orthod. 5:248–58. PMID: 15546015.
5. Fillion D. 2010; Avantages cliniques de la technique linguale Orapix-arc droit. Int Orthod. 8:125–51. DOI: 10.1016/j.ortho.2010.03.006. PMID: 20434419.
6. Ganzer N, Feldmann I, Liv P, Bondemark L. 2018; A novel method for superimposition and measurements on maxillary digital 3D models-studies on validity and reliability. Eur J Orthod. 40:45–51. DOI: 10.1093/ejo/cjx029. PMID: 28444179. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049712576&origin=inward.
7. Becker K, Wilmes B, Grandjean C, Vasudavan S, Drescher D. 2018; Skeletally anchored mesialization of molars using digitized casts and two surface-matching approaches: analysis of treatment effects. J Orofac Orthop. 79:11–8. DOI: 10.1007/s00056-017-0108-y. PMID: 29134232. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85033604945&origin=inward.
8. Choi JI, Cha BK, Jost-Brinkmann PG, Choi DS, Jang IS. 2012; Validity of palatal superimposition of 3-dimensional digital models in cases treated with rapid maxillary expansion and maxillary protraction headgear. Korean J Orthod. 42:235–41. DOI: 10.4041/kjod.2012.42.5.235. PMID: 23173116. PMCID: PMC3495254. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84869076429&origin=inward.
9. Yun D, Choi DS, Jang I, Cha BK. 2018; Clinical application of an intraoral scanner for serial evaluation of orthodontic tooth movement: a preliminary study. Korean J Orthod. 48:262–7. DOI: 10.4041/kjod.2018.48.4.262. PMID: 30003060. PMCID: PMC6041451. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049912562&origin=inward.
10. An K, Jang I, Choi DS, Jost-Brinkmann PG, Cha BK. 2015; Identification of a stable reference area for superimposing mandibular digital models. J Orofac Orthop. 76:508–19. DOI: 10.1007/s00056-015-0310-8. PMID: 26250456. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84946122944&origin=inward.
11. Stucki S, Gkantidis N. 2020; Assessment of techniques used for superimposition of maxillary and mandibular 3D surface models to evaluate tooth movement: a systematic review. Eur J Orthod. 42:559–70. DOI: 10.1093/ejo/cjz075. PMID: 31742598. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85095668182&origin=inward.
12. Chen G, Chen S, Zhang XY, Jiang RP, Liu Y, Shi FH, et al. 2011; Stable region for maxillary dental cast superimposition in adults, studied with the aid of stable miniscrews. Orthod Craniofac Res. 14:70–9. DOI: 10.1111/j.1601-6343.2011.01510.x. PMID: 21457456. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79953324128&origin=inward.
13. Garib D, Miranda F, Yatabe MS, Lauris JRP, Massaro C, McNamara JA Jr, et al. 2019; Superimposition of maxillary digital models using the palatal rugae: does ageing affect the reliability? Orthod Craniofac Res. 22:183–93. DOI: 10.1111/ocr.12309. PMID: 30844126. PMCID: PMC6642031. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063671420&origin=inward.
14. Chong JA, Mohamed AMFS, Pau A. 2020; Morphological patterns of the palatal rugae: a review. J Oral Biosci. 62:249–59. DOI: 10.1016/j.job.2020.06.003. PMID: 32619633. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087908767&origin=inward.
15. Choi SH, Koh K, Lee KJ, Hwang CJ, Cha JY. 2018; Analysis of the morphological characteristics of the palatal rugae for three-dimensional superimposition of digital models in Korean subjects. Biomed Res Int. 2018:3936918. DOI: 10.1155/2018/3936918. PMID: 30598994. PMCID: PMC6287163. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85058659377&origin=inward.
16. Fleming PS, Marinho V, Johal A. 2011; Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofac Res. 14:1–16. DOI: 10.1111/j.1601-6343.2010.01503.x. PMID: 21205164. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78650891523&origin=inward.
17. Pauls AH. 2010; Therapeutic accuracy of individualized brackets in lingual orthodontics. J Orofac Orthop. 71:348–61. German. DOI: 10.1007/s00056-010-1027-3. PMID: 20963544. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78650159689&origin=inward.
18. Vasilakos G, Schilling R, Halazonetis D, Gkantidis N. 2017; Assessment of different techniques for 3D superimposition of serial digital maxillary dental casts on palatal structures. Sci Rep. 7:5838. DOI: 10.1038/s41598-017-06013-5. PMID: 28724930. PMCID: PMC5517608. PMID: cecbda60a212436ba47a27dd1d614ee0. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85025619854&origin=inward.
19. Ricketts RM. 1975; A four-step method to distinguish orthodontic changes from natural growth. J Clin Orthod. 9:208–15. 218–28. PMID: 1056343. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0016490903&origin=inward.
20. Dohke M, Osato S. 1994; Morphological study of the palatal rugae in Japanese. I. Bilateral differences in the regressive evolution of the palatal rugae. Jpn J Oral Biol. 36:126–40. DOI: 10.2330/joralbiosci1965.36.126.
21. Jang I, Tanaka M, Koga Y, Iijima S, Yozgatian JH, Cha BK, et al. 2009; A novel method for the assessment of three-dimensional tooth movement during orthodontic treatment. Angle Orthod. 79:447–53. DOI: 10.2319/042308-225.1. PMID: 19413387. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67649935332&origin=inward.
22. Pazera C, Gkantidis N. 2021; Palatal rugae positional changes during orthodontic treatment of growing patients. Orthod Craniofac Res. 24:351–9. DOI: 10.1111/ocr.12441. PMID: 33200559. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096987921&origin=inward.
23. Hoggan BR, Sadowsky C. 2001; The use of palatal rugae for the assessment of anteroposterior tooth movements. Am J Orthod Dentofacial Orthop. 119:482–8. DOI: 10.1067/mod.2001.113001. PMID: 11343019. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0035344049&origin=inward.
24. van der Linden FP. 1978; Changes in the position of posterior teeth in relation to ruga points. Am J Orthod. 74:142–61. DOI: 10.1016/0002-9416(78)90081-7. PMID: 278487. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0017999214&origin=inward.
25. Peavy DC Jr, Kendrick GS. 1967; The effects of tooth movement on the palatine rugae. J Prosthet Dent. 18:536–42. DOI: 10.1016/0022-3913(67)90219-3. PMID: 5234941. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0014178323&origin=inward.
26. Cha BK, Lee JY, Jost-Brinkmann PG, Yoshida N. 2007; Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology. Eur J Orthod. 29:325–31. DOI: 10.1093/ejo/cjm019. PMID: 17513876. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548103282&origin=inward.
27. Thiruvenkatachari B, Al-Abdallah M, Akram NC, Sandler J, O'Brien K. 2009; Measuring 3-dimensional tooth movement with a 3-dimensional surface laser scanner. Am J Orthod Dentofacial Orthop. 135:480–5. DOI: 10.1016/j.ajodo.2007.03.040. PMID: 19361734. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=63749101096&origin=inward.
28. Abdi AH, Nouri M. 2017; Registration of serial maxillary models via the weighted rugae superimposition method. Orthod Craniofac Res. 20:79–84. DOI: 10.1111/ocr.12142. PMID: 28150411. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85011659807&origin=inward.
29. Simmons JD, Moore RN, Erickson LC. 1987; A longitudinal study of anteroposterior growth changes in the palatine rugae. J Dent Res. 66:1512–5. DOI: 10.1177/00220345870660092001. PMID: 3476625. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0023414951&origin=inward.
30. Ashmore JL, Kurland BF, King GJ, Wheeler TT, Ghafari J, Ramsay DS. 2002; A 3-dimensional analysis of molar movement during headgear treatment. Am J Orthod Dentofacial Orthop. 121:18–29. discussion 29–30. DOI: 10.1067/mod.2002.120687. PMID: 11786867. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=15744368203&origin=inward.
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr