Obstet Gynecol Sci.  2022 Jul;65(4):303-316. 10.5468/ogs.21219.

Management of inoperable endometrial cancer

Affiliations
  • 1Division of Gynecologic Oncology, National Cancer Institute, Bangkok, Thailand
  • 2Department of Obstetrics and Gynecology, Rajavithi Hospital, Rangsit University College of Medicine, Bangkok, Thailand
  • 3Women’s Care Center, MedPark Hospital, Bangkok, Thailand
  • 4Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand

Abstract

Some endometrial cancer (EMC) patients are not good candidates for primary surgery. The three major types of treatment for inoperable EMC are radiation therapy, chemotherapy, or their combination as neoadjuvant treatment before surgery. Radiation therapy alone (of different modes) has been used as the sole definitive therapeutic modality, particularly for early-stage disease that is limited to the uterine body and cervix with or without parametrial invasion. The most common treatment modality is neoadjuvant treatment before surgery. Postoperative adjuvant treatment is also occasionally used, depending mainly on the sites of the disease and the results of surgery. Data on neoadjuvant hormonal or radiation therapy are limited, with studies focusing on laboratory outcomes or having only a small number of patients. Most neoadjuvant treatments before surgery involved chemotherapy and fewer combined chemoradiotherapy. Surgery was generally performed, particularly in patients who had shown responses or at least stable disease to neoadjuvant treatment. Perioperative outcomes after neoadjuvant treatment were superior to those after primary surgery, whereas survival data were still inconsistent. Features that had or tended to have a favorable prognosis were younger age, early-stage disease, response to neoadjuvant treatment, low preoperative cancer antigen-125 level, and optimal surgery. Among different modalities of neoadjuvant treatment, which has become a frequent mode of treatment, neoadjuvant chemotherapy was more common than radiation therapy alone or chemoradiation.

Keyword

Endometrial cancer; Radiotherapy; Chemotherapy; Quality of life

Cited by  1 articles

Preoperative modified frailty index to predict surgical complications in endometrial cancer patients
Aroontorn Pichatechaiyoot, Sarayut Thannil, Sathana Boonyapipat, Rakchai Buhachat
Obstet Gynecol Sci. 2022;65(6):513-521.    doi: 10.5468/ogs.22140.


Reference

References

1. Creasman WT, Odicino F, Maisonneuve P, Quinn MA, Beller U, Benedet JL, et al. Carcinoma of the corpus uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006; 95(Suppl 1):S105–43.
2. Bogani G, Gostout BS, Dowdy SC, Multinu F, Casarin J, Cliby WA, et al. Clinical utility of preoperative computed tomography in patients with endometrial cancer. Int J Gynecol Cancer. 2017; 27:1685–93.
Article
3. Dai S, Nahas S, Murphy JK, Lawrence J, May T, Feigenberg T. Impact and cost of preoperative computed tomography imaging on the management of patients diagnosed with high-grade endometrial cancer. Int J Gynaecol Obstet. 2019; 145:219–24.
Article
4. Chao A, Chang TC, Ng KK, Hsueh S, Huang HJ, Chou HH, et al. 18F-FDG PET in the management of endometrial cancer. Eur J Nucl Med Mol Imaging. 2006; 33:36–44.
Article
5. Teng F, Zhang YF, Wang YM, Yu J, Lang X, Tian WY, et al. Contrast-enhanced MRI in preoperative assessment of myometrial and cervical invasion, and lymph node metastasis: diagnostic value and error analysis in endometrial carcinoma. Acta Obstet Gynecol Scand. 2015; 94:266–73.
Article
6. Bristow RE, Asrari F, Trimble EL, Montz FJ. Extended surgical staging for uterine papillary serous carcinoma: survival outcome of locoregional (stage I–III) disease. Gynecol Oncol. 2001; 81:279–86.
Article
7. Chao CK, Grigsby PW, Perez CA, Mutch DG, Herzog T, Camel HM. Medically inoperable stage I endometrial carcinoma: a few dilemmas in radiotherapeutic management. Int J Radiat Oncol Biol Phys. 1996; 34:27–31.
Article
8. Yoo S, Hegarty SE, Mishra MV, Patel N, Cantrell LA, Showalter TN. Definitive radiation therapy for stage I–II endometrial cancer: an observational study of nonoperative management. Am J Clin Oncol. 2017; 40:582–9.
9. Kemmerer E, Hernandez E, Ferriss JS, Valakh V, Miyamoto C, Li S, et al. Use of image-guided stereotactic body radiation therapy in lieu of intracavitary brachytherapy for the treatment of inoperable endometrial neoplasia. Int J Radiat Oncol Biol Phys. 2013; 85:129–35.
Article
10. Gebhardt B, Gill B, Glaser S, Kim H, Houser C, Kelley J, et al. Image-guided tandem and cylinder brachytherapy as monotherapy for definitive treatment of inoperable endometrial carcinoma. Gynecol Oncol. 2017; 147:302–8.
Article
11. Shenfield CB, Pearcey RG, Ghosh S, Dundas GS. The management of inoperable stage I endometrial cancer using intracavitary brachytherapy alone: a 20-year institutional review. Brachytherapy. 2009; 8:278–83.
Article
12. Kupelian PA, Eifel PJ, Tornos C, Burke TW, Delclos L, Oswald MJ. Treatment of endometrial carcinoma with radiation therapy alone. Int J Radiat Oncol Biol Phys. 1993; 27:817–24.
Article
13. Fishman DA, Roberts KB, Chambers JT, Kohorn EI, Schwartz PE, Chambers SK. Radiation therapy as exclusive treatment for medically inoperable patients with stage I and II endometrioid carcinoma with endometrium. Gynecol Oncol. 1996; 61:189–96.
14. Churn M, Jones B. Primary radiotherapy for carcinoma of the endometrium using external beam radiotherapy and single line source brachytherapy. Clin Oncol (R Coll Radiol). 1999; 11:255–62.
Article
15. Podzielinski I, Randall ME, Breheny PJ, Escobar PF, Cohn DE, Quick AM, et al. Primary radiation therapy for medically inoperable patients with clinical stage I and II endometrial carcinoma. Gynecol Oncol. 2012; 124:36–41.
Article
16. Nguyen C, Souhami L, Roman TN, Clark BG. High-dose-rate brachytherapy as the primary treatment of medically inoperable stage I–II endometrial carcinoma. Gynecol Oncol. 1995; 59:370–5.
Article
17. Knocke TH, Kucera H, Weidinger B, Höller W, Pötter R. Primary treatment of endometrial carcinoma with high-dose-rate brachytherapy: results of 12 years of experience with 280 patients. Int J Radiat Oncol Biol Phys. 1997; 37:359–65.
Article
18. Kucera H, Knocke TH, Kucera E, Pötter R. Treatment of endometrial carcinoma with high-dose-rate brachytherapy alone in medically inoperable stage I patients. Acta Obstet Gynecol Scand. 1998; 77:1008–12.
Article
19. Nguyen TV, Petereit DG. High-dose-rate brachytherapy for medically inoperable stage I endometrial cancer. Gynecol Oncol. 1998; 71:196–203.
Article
20. Niazi TM, Souhami L, Portelance L, Bahoric B, Gilbert L, Stanimir G. Long-term results of high-dose-rate brachytherapy in the primary treatment of medically inoperable stage I–II endometrial carcinoma. Int J Radiat Oncol Biol Phys. 2005; 63:1108–13.
Article
21. Weitmann HD, Pötter R, Waldhäusl C, Nechvile E, Kirisits C, Knocke TH. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: clinical experience and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2005; 62:468–78.
Article
22. Coon D, Beriwal S, Heron DE, Kelley JL, Edwards RP, Sukumvanich P, et al. High-dose-rate Rotte “Y” applicator brachytherapy for definitive treatment of medically inoperable endometrial cancer: 10-year results. Int J Radiat Oncol Biol Phys. 2008; 71:779–83.
Article
23. Inciura A, Atkocius V, Juozaityte E, Vaitkiene D. Long-term results of high-dose-rate brachytherapy and external-beam radiotherapy in the primary treatment of endometrial cancer. J Radiat Res. 2010; 51:675–81.
Article
24. Wegner RE, Beriwal S, Heron DE, Richard SD, Kelly JL, Edwards RP, et al. Definitive radiation therapy for endometrial cancer in medically inoperable elderly patients. Brachytherapy. 2010; 9:260–5.
Article
25. Gill BS, Chapman BV, Hansen KJ, Sukumvanich P, Beriwal S. Primary radiotherapy for nonsurgically managed stage I endometrial cancer: utilization and impact of brachytherapy. Brachytherapy. 2015; 14:373–9.
Article
26. Acharya S, Esthappan J, Badiyan S, DeWees TA, Tanderup K, Schwarz JK, et al. Medically inoperable endometrial cancer in patients with a high body mass index (BMI): patterns of failure after 3-D image-based high dose rate (HDR) brachytherapy. Radiother Oncol. 2016; 118:167–72.
Article
27. Draghini L, Maranzano E, Casale M, Trippa F, Anselmo P, Arcidiacono F, et al. Definitive three-dimensional high-dose-rate brachytherapy for inoperable endometrial cancer. J Contemp Brachytherapy. 2017; 9:118–23.
Article
28. Gannavarapu BS, Hrycushko B, Jia X, Albuquerque K. Upfront radiotherapy with brachytherapy for medically inoperable and unresectable patients with high-risk endometrial cancer. Brachytherapy. 2020; 19:139–45.
Article
29. Irie D, Okonogi N, Wakatsuki M, Kato S, Ohno T, Karasawa K, et al. Carbon-ion radiotherapy for inoperable endometrial carcinoma. J Radiat Res. 2018; 59:309–15.
Article
30. Schwarz JK, Beriwal S, Esthappan J, Erickson B, Feltmate C, Fyles A, et al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy. 2015; 14:587–99.
Article
31. Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study. Cancer. 1987; 60(8 Suppl):2035–41.
Article
32. Creasman WT, Kohler MF, Odicino F, Maisonneuve P, Boyle P. Prognosis of papillary serous, clear cell, and grade 3 stage I carcinoma of the endometrium. Gynecol Oncol. 2004; 95:593–6.
Article
33. Brinton LA, Felix AS, McMeekin DS, Creasman WT, Sherman ME, Mutch D, et al. Etiologic heterogeneity in endometrial cancer: evidence from a gynecologic oncology group trial. Gynecol Oncol. 2013; 129:277–84.
Article
34. Williams AT, Ganesan R. Role of the pathologist in assessing response to treatment of ovarian and endometrial cancers. Histopathology. 2020; 76:93–101.
Article
35. Davidson BA, Foote J, Clark LH, Broadwater G, Ehrisman J, Gehrig P, et al. Tumor grade and chemotherapy response in endometrioid endometrial cancer. Gynecol Oncol Rep. 2016; 17:3–6.
Article
36. Conway JL, Lukovic J, Ferguson SE, Zhang J, Xu W, Dhani N, et al. Clinical outcomes of surgically unresectable endometrial cancers. Am J Clin Oncol. 2019; 42:777–82.
Article
37. Khouri OR, Frey MK, Musa F, Muggia F, Lee J, Boyd L, et al. Neoadjuvant chemotherapy in patients with advanced endometrial cancer. Cancer Chemother Pharmacol. 2019; 84:281–5.
Article
38. Rajkumar S, Nath R, Lane G, Mehra G, Begum S, Sayasneh A. Advanced stage (IIIC/IV) endometrial cancer: role of cytoreduction and determinants of survival. Eur J Obstet Gynecol Reprod Biol. 2019; 234:26–31.
Article
39. Vandenput I, Van Calster B, Capoen A, Leunen K, Berteloot P, Neven P, et al. Neoadjuvant chemotherapy followed by interval debulking surgery in patients with serous endometrial cancer with transperitoneal spread (stage IV): a new preferred treatment? Br J Cancer. 2009; 101:244–9.
Article
40. Mahdi H, Maurer KA, Nutter B, Rose PG. The impact of percent reduction in CA-125 levels on prediction of the extent of interval cytoreduction and outcome in patients with advanced-stage cancer of Müllerian origin treated with neoadjuvant chemotherapy. Int J Gynecol Cancer. 2015; 25:823–9.
Article
41. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013; 497:67–73.
Article
42. Thigpen JT, Brady MF, Alvarez RD, Adelson MD, Homesley HD, Manetta A, et al. Oral medroxyprogesterone acetate in the treatment of advanced or recurrent endometrial carcinoma: a dose-response study by the Gynecologic Oncology Group. J Clin Oncol. 1999; 17:1736–44.
Article
43. Nikolopoulos M, Godfrey MAL, Wuntakal R. Medically unfit women with early-stage endometrial cancer treated with the levonorgestrel intrauterine system. Obstet Gynecol Sci. 2020; 63:337–45.
Article
44. Martin-Hirsch PP, Bryant A, Keep SL, Kitchener HC, Lilford R. Adjuvant progestagens for endometrial cancer. Cochrane Database Syst Rev. 2011; (6):CD001040.
Article
45. Bershteĭn LM, Danilova MA, AIu Kovalevskĭ, Gershfel’d ED, Poroshina TE, Tsyrlina TE, et al. Criteria for evaluating the effectiveness of aromatase inhibitors in the neoadjuvant treatment of patients with endometrial carcinoma. Vopr Onkol. 2009; 55:314–8.
46. Thangavelu A, Hewitt MJ, Quinton ND, Duffy SR. Neoadjuvant treatment of endometrial cancer using anastrozole: a randomised pilot study. Gynecol Oncol. 2013; 131:613–8.
Article
47. Bershteĭn LM, SIa Maksimov, Danilova MA, Gershfel’d ÉD, Boiarkina MP, Khadzhimba AS, et al. Effectiveness of aromatase inhibitors in comparison with metformin for neoadjuvant treatment in patients with endometrial cancer. Vopr Onkol. 2011; 57:737–41.
48. Sobotkowski J, Zielinska M, Grzelak M, Pietraszek A. Preoperative high-dose brachytherapy in cases of endometrial carcinoma--preliminary assessment of outcomes and safety. Med Wieku Rozwoj. 2004; 8(2 Pt 1):309–16.
49. Hoffstetter S, Brunaud C, Marchal C, Luporsi E, Guillemin F, Leroux A, et al. Preoperative brachytherapy for clinical stage I and II endometrial carcinoma: results from a series of 780 patients with a 10-year follow-up. Cancer Radiother. 2004; 8:178–87.
50. Shukla G, Beriwal S, Krivak TC, Kelley JL, Sukumvanich P, Edwards RP, et al. Preoperative high dose rate brachy-therapy for clinical stage II endometrial carcinoma. J Contemp Brachytherapy. 2011; 3:70–3.
51. Vargo JA, Boisen MM, Comerci JT, Kim H, Houser CJ, Sukumvanich P, et al. Neoadjuvant radiotherapy with or without chemotherapy followed by extrafascial hyster-ectomy for locally advanced endometrial cancer clinically extending to the cervix or parametria. Gynecol Oncol. 2014; 135:190–5.
Article
52. Boisen MM, Vargo JA, Beriwal S, Sukumvanich P, Olawaiye AB, Kelley JL, et al. Surgical outcomes of patients undergoing extrafascial hysterectomy after neoadjuvant radiotherapy with or without chemotherapy for locally advanced endometrial cancer clinically extending to the cervix or parametria. Int J Gynecol Cancer. 2017; 27:1149–54.
Article
53. Rose PG, Nerenstone S, Brady MF, Clarke-Pearson D, Olt G, Rubin SC, et al. Secondary surgical cytoreduction for advanced ovarian carcinoma. N Engl J Med. 2004; 351:2489–97.
Article
54. Vergote I, Tropé CG, Amant F, Kristensen GB, Ehlen T, Johnson N, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010; 363:943–53.
Article
55. Despierre E, Moerman P, Vergote I, Amant F. Is there a role for neoadjuvant chemotherapy in the treatment of stage IV serous endometrial carcinoma? Int J Gynecol Cancer. 2006; 16(Suppl 1):273–7.
Article
56. Takami M, Ohta Y, Nakayama Y, Fukai H, Matsumoto H, Takimoto T, et al. A case of advanced clear cell carcinoma of the endometrium that responded remarkably to neoadjuvant chemotherapy of combination carboplatin plus weekly paclitaxel. Gan To Kagaku Ryoho. 2007; 34:457–60.
57. Eto T, Saito T, Shimokawa M, Hatae M, Takeshima N, Kobayashi H, et al. Status of treatment for the overall population of patients with stage IVb endometrial cancer, and evaluation of the role of preoperative chemotherapy: a retrospective multi-institutional study of 426 patients in Japan. Gynecol Oncol. 2013; 131:574–80.
Article
58. Wilkinson-Ryan I, Frolova AI, Liu J, Massad LS, Thaker PH, Powell MA, et al. Neoadjuvant chemotherapy versus primary cytoreductive surgery for stage IV uterine serous carcinoma. Int J Gynecol Cancer. 2015; 25:63–8.
Article
59. de Lange NM, Ezendam NPM, Kwon JS, Vandenput I, Mirchandani D, Amant F, et al. Neoadjuvant chemotherapy followed by surgery for advanced-stage endometrial cancer. Curr Oncol. 2019; 26:e226–32.
Article
60. Bogani G, Ditto A, Maggiore ULR, Scaffa C, Mosca L, Chiappa V, et al. Neoadjuvant chemotherapy followed by interval debulking surgery for unresectable stage IVb serous endometrial cancer. Tumori. 2019; 105:92–7.
Article
61. Chambers LM, Jia X, Rose PG, AlHilli M. Impact of treatment modality on overall survival in women with advanced endometrial cancer: a national cancer database analysis. Gynecol Oncol. 2021; 160:405–12.
Article
62. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020; 38:1–10.
Article
63. Makker V, Taylor MH, Aghajanian C, Oaknin A, Mier J, Cohn AL, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J Clin Oncol. 2020; 38:2981–92.
Article
64. Makker V, Colombo N, Casado Herráez A, Santin A, Colomba A, Miller D, et al. A multicenter, open-label, randomized, phase 3 study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer. Gynecol Oncol. 2021; 162(Suppl 1):S4.
65. Marth C, Tarnawski R, Tyulyandina A, Pignata S, Gilbert L, Kaen D, et al. Phase 3, randomized, open-label study of pembrolizumab plus lenvatinib versus chemotherapy for first-line treatment of advanced or recurrent endometrial cancer: ENGOT-en9/LEAP-001. Int J Gynecol Cancer. 2022; 32:93–100.
Article
66. Randall ME, Filiaci V, McMeekin DS, von Gruenigen V, Huang H, Yashar CM, et al. Phase III trial: adjuvant pelvic radiation therapy versus vaginal brachytherapy plus paclitaxel/carboplatin in high-intermediate and high-risk early stage endometrial cancer. J Clin Oncol. 2019; 37:1810–8.
67. Matei D, Filiaci V, Randall ME, Mutch D, Steinhoff MM, DiSilvestro PA, et al. Adjuvant chemotherapy plus radiation for locally advanced endometrial cancer. N Engl J Med. 2019; 380:2317–26.
Article
68. de Boer SM, Powell ME, Mileshkin L, Katsaros D, Bessette P, Haie-Meder C, et al. Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial. Lancet Oncol. 2019; 20:1273–85.
69. Kaneyasu Y, Okawa T, Yajima M, Saito R, Nakabayashi M, Seshimo A, et al. Stage IVB uterine endometrial cancer successfully salvaged by chemoradiotherapy and surgery. Int J Clin Oncol. 2003; 8:60–4.
Article
70. Horne Z, Vargo JA, Comerci JT, Beriwal S. Complete pathologic response following neoadjuvant chemoradiotherapy and high-dose-rate brachytherapy for locally advanced endometrial carcinoma. Cureus. 2015; 7:e407.
Article
71. Iheagwara UK, Vargo JA, Chen KS, Burton DR, Taylor SE, Berger JL, et al. Neoadjuvant chemoradiation therapy followed by extrafascial hysterectomy in locally advanced type II endometrial cancer clinically extending to cervix. Pract Radiat Oncol. 2019; 9:248–56.
Article
72. Boothe D, Orton A, Odei B, Stoddard G, Suneja G, Poppe MM, et al. Chemoradiation versus chemotherapy or radiation alone in stage III endometrial cancer: patterns of care and impact on overall survival. Gynecol Oncol. 2016; 141:421–7.
Article
Full Text Links
  • OGS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr