Prog Med Phys.  2022 Jun;33(2):11-24. 10.14316/pmp.2022.33.2.11.

Halide Perovskites for X‑ray Detection: The Future of Diagnostic Imaging

Affiliations
  • 1Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon, Korea
  • 2TOPnC Co., Ltd., Hwaseong, Korea
  • 3Physics Department, Division of Liberal Arts and Sciences, Hanil University & Presbyterian Theological Seminary, Wanju, Korea

Abstract

X-ray detection has widely been applied in medical diagnostics, security screening, nondestructive testing in the industry, etc. Medical X-ray imaging procedures require digital flat detectors operating with low doses to reduce radiation health risks. Recently, metal halide perovskites (MHPs) have shown great potential in high-performance X-ray detection because of their attractive properties, such as strong X-ray absorption, high mobility–lifetime product, tunable bandgap, lowtemperature fabrication, near-unity photoluminescence quantum yields, and fast photoresponse. In this paper, we review and introduce the development status of new perovskite X-ray detectors and imaging, which have emerged as a new promising high-sensitivity X-ray detection technology. We discuss the latest progress and future perspective of MHP-based X-ray detection in medical imaging. Finally, we compare the conventional detection methods with quantum-enhanced detection, pointing out the challenges and perspectives for future research directions toward perovskite-based X-ray applications.

Keyword

Perovskite; X-ray; Quantum; Photoluminescence; Scintallation

Figure

  • Fig. 1 Operation principles of direct conversion X-ray detectors. (a) A pulse-mode detector and (b) a current-mode detector. Reused from the article of Zhou et al. (ACS Energy Lett 2021;6:739−768) [3] with original copyright holder’s permission.

  • Fig. 2 Schematic illustration of the scintillation process in inorganic scintillators. Reused from the article of Zhou et al. (ACS Energy Lett 2021;6:739−768) [3] with original copyright holder’s permission.

  • Fig. 3 Left: ABX3 perovskite structure. Right: The same perovskite structure seen from different angle. Left: Reused from the article of Chen et al. (RSC Adv 2018;8:10489-10508) [14] with permission from the Royal Society of Chemistry.

  • Fig. 4 Commission Internationale de I’Eclairage (CIE) chromaticity coordinates of the XEL measured for samples 1−12, which are (1) CsPbCl3, (2) CsPbCl2Br, (3) CsPbCl1.5Br1.5, (4) CsPbClBr2, (5) CsPbCl2.5Br0.5, (6) CsPbBr3, (7) CsPbBr2I, (8) CsPbBr1.8I1.2, (9) CsPbBr1.5I1.5, (10) CsPbBr1.2I1.8, (11) CsPbBrI2, and (12) CsPbI3. Reused from the article of Zhou et al. (ACS Energy Lett 2021;6:739−768) [3] with original copyright holder’s permission.

  • Fig. 5 Sensitivity vs. X-ray voltage per µm when using the direct perovskite X-ray structure. The open squares indicate halide perovskites.

  • Fig. 6 Schematic representations showing the connectivity of BX6 octahedra in different dimensionalities (3D, 2D, 1D, and 0D) at the molecular levels. D, dimensional. Reused from Zhou et al. (Mater Sci Eng R Rep 2020;141:100548) [17] with original copyright holder’s permission.

  • Fig. 7 Schematic representation of the mechanism of PL excitation, energy transfer, and PL emission in Mn2+-doped material. The orange lines represent the energy level diagram of the Mn2+ ion in a free-ion state (right) and tetrahedrally coordinated environment (left) in a supertetrahedral nanocluster. The dotted arrows indicate nonradiative transitions. PL, photoluminescence. Reprinted with permission from Lin et al. (J Am Chem Soc 2014;136:4769-4779) [24]. Copyright 2014 American Chemical Society.

  • Fig. 8 Scheme of the experimental setup. The purple beam indicates the pump beam; the green beams are the signal and idler beams; and the red beams represent the noise. The object has three slits. The detectors are Si detectors. Reused from Sofer et al. (Phys Rev X 2019;9:031033) [11].

  • Fig. 9 Reconstruction of the image of the triple-slit object by (a) quantum radiation, (b) classical radiation, and (c) classical coincidence counting. The average number of counts is comparable among the panels. In each of the panels, the horizontal axis represents the relative position of the object, and the vertical axis represents the number of events that are detected by the detection system. Reused from Sofer et al. (Phys Rev X 2019;9:031033) [11].


Reference

References

1. Glushkova A, Andričević P, Smajda R, Náfrádi B, Kollár M, Djokić V, et al. 2021; Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector. ACS Nano. 15:4077–4084. DOI: 10.1021/acsnano.0c07993. PMID: 33596064.
Article
2. Li W, Xu Y, Peng J, Li R, Song J, Huang H, et al. 2021; Evaporated perovskite thick junctions for X-ray detection. ACS Appl Mater Interfaces. 13:2971–2978. DOI: 10.1021/acsami.0c20973. PMID: 33399446.
Article
3. Zhou Y, Chen J, Bakr OM, Mohammed OF. 2021; Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 6:739–768. DOI: 10.1021/acsenergylett.0c02430.
Article
4. Gill HS, Elshahat B, Kokil A, Li L, Mosurkal R, Zygmanski P, et al. 2018; Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med. 5:20–23. DOI: 10.1016/j.phmed.2018.04.001.
Article
5. Tsai H, Liu F, Shrestha S, Fernando K, Tretiak S, Scott B, et al. 2020; A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Sci Adv. 6:eaay0815. DOI: 10.1126/sciadv.aay0815. PMID: 32300647. PMCID: PMC7148088.
Article
6. Zhang H, Wang F, Lu Y, Sun Q, Xu Y, Zhang BB, et al. 2020; High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. J Mater Chem C. 8:1248–1256. DOI: 10.1039/C9TC05490A.
Article
7. Zhang BB, Liu X, Xiao B, Hafsia AB, Gao K, Xu Y, et al. 2020; High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J Phys Chem Lett. 11:432–437. DOI: 10.1021/acs.jpclett.9b03523. PMID: 31885274.
Article
8. Geng X, Zhang H, Ren J, He P, Zhang P, Feng Q, et al. 2021; High-performance single crystal CH3NH3PbI3 perovskite x-ray detector. Appl Phys Lett. 118:063506. DOI: 10.1063/5.0040653.
Article
9. Birowosuto MD, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W, Bruno A, et al. 2016; X-ray scintillation in lead halide perovskite crystals. Sci Rep. 6:37254. DOI: 10.1038/srep37254. PMID: 27849019. PMCID: PMC5111063.
Article
10. Wu H, Ge Y, Niu G, Tang J. 2021; Metal halide perovskites for X-ray detection and imaging. Matter. 4:144–163. DOI: 10.1016/j.matt.2020.11.015.
Article
11. Sofer S, Strizhevsky E, Schori A, Tamasaku K, Shwartz S. 2019; Quantum enhanced X-ray detection. Phys Rev X. 9:031033. DOI: 10.1103/PhysRevX.9.031033.
Article
12. Cowen AR, Kengyelics SM, Davies AG. 2008; Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin Radiol. 63:487–498. DOI: 10.1016/j.crad.2007.10.014. PMID: 18374710.
Article
13. Wei H, Huang J. 2019; Halide lead perovskites for ionizing radiation detection. Nat Commun. 10:1066. DOI: 10.1038/s41467-019-08981-w. PMID: 30842411. PMCID: PMC6403296.
Article
14. Chen Y, Zhang L, Zhang Y, Gao H, Yan H. 2018; Large-area perovskite solar cells- a review of recent progress and issues. RSC Adv. 8:10489–10508. DOI: 10.1039/C8RA00384J. PMID: 35540458. PMCID: PMC9078911.
Article
15. Kim YC, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, et al. 2017; Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 550:87–91. DOI: 10.1038/nature24032. PMID: 28980632.
Article
16. Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov AA, et al. 2018; All-inorganic perovskite nanocrystal scintillators. Nature. 561:88–93. DOI: 10.1038/s41586-018-0451-1. PMID: 30150772.
Article
17. Zhou G, Su B, Huang J, Zhang Q, Xia Z. 2020; Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Mater Sci Eng R Rep. 141:100548. DOI: 10.1016/j.mser.2020.100548.
Article
18. Li X, Meng C, Huang B, Yang D, Xu X, Zeng H. 2020; All-perovskite integrated X-ray detector with ultrahigh sensitivity. Adv Opt Mater. 8:2000273. DOI: 10.1002/adom.202000273.
Article
19. Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang HH, Wang C, et al. 2016; Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics. 10:333–339. DOI: 10.1038/nphoton.2016.41.
Article
20. Wei W, Zhang Y, Xu Q, Wei H, Fang Y, Wang Q, et al. 2017; Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat Photonics. 11:315–321. DOI: 10.1038/nphoton.2017.43.
Article
21. Zhu W, Ma W, Su Y, Chen Z, Chen X, Ma Y, et al. 2020; Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci Appl. 9:112. DOI: 10.1038/s41377-020-00353-0. PMID: 32637079. PMCID: PMC7327019.
Article
22. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, et al. 2015; Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15:3692–3696. DOI: 10.1021/nl5048779. PMID: 25633588. PMCID: PMC4462997.
Article
23. Zhang J, Hodes G, Jin Z, Liu SF. 2019; All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew Chem Int Ed Engl. 58:15596–15618. DOI: 10.1002/anie.201901081. PMID: 30861267.
24. Lin J, Zhang Q, Wang L, Liu X, Yan W, Wu T, et al. 2014; Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. J Am Chem Soc. 136:4769–4779. DOI: 10.1021/ja501288x. PMID: 24625310.
Article
25. Baker S, Brown K, Curtis A, Lutz SS, Howe R, Malone R, et al. 2014. Aug. 17-21. Scintillator efficiency study with MeV x-rays. Paper presented at: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI. San Diego, USA: DOI: 10.1117/12.2064028.
26. Yan J, Qiu W, Wu G, Heremans P, Chen H. 2018; Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J Mater Chem A. 6:11063–11077. DOI: 10.1039/C8TA02288G.
Article
27. Shibuya K, Koshimizu M, Takeoka Y, Asai K. 2002; Scintillation properties of (C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons. Nucl Instrum Methods Phys Res Sect B. 194:207–212. DOI: 10.1016/S0168-583X(02)00671-7.
Article
28. Zhao Y, Qiu Y, Gao H, Feng J, Chen G, Jiang L, et al. 2020; Layered-perovskite nanowires with long-range orientational order for ultrasensitive photodetectors. Adv Mater. 32:e1905298. DOI: 10.1002/adma.201905298. PMID: 31967709.
Article
29. Yang H, Fan W, Hills-Kimball K, Chen O, Wang LO. 2019; Introducing manganese-doped lead halide perovskite quantum dots: a simple synthesis illustrating optoelectronic properties of semiconductors. J Chem Educ. 96:2300–2307. DOI: 10.1021/acs.jchemed.8b00735.
Article
30. Watson KM, Asbury JB. 2021; Electron transfer going the distance: Mn-doped ZnSe as a model photocatalytic system. J Phys Chem C. 125:25749–25756. DOI: 10.1021/acs.jpcc.1c08298.
Article
31. Xu LJ, Lin X, He Q, Worku M, Ma B. 2020; Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat Commun. 11:4329. DOI: 10.1038/s41467-020-18119-y. PMID: 32859920. PMCID: PMC7455565.
Article
32. Xu X, Qian W, Xiao S, Wang J, Zheng S, Yang S. 2020; Halide perovskites: a dark horse for direct X-ray imaging. EcoMat. 2:e12064. DOI: 10.1002/eom2.12064.
Article
33. Yu D, Wang P, Cao F, Gu Y, Liu J, Han Z, et al. 2020; Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring. Nat Commun. 11:3395. DOI: 10.1038/s41467-020-17114-7. PMID: 32636471. PMCID: PMC7341884.
Article
34. Caspani L, Xiong C, Eggleton BJ, Bajoni D, Liscidini M, Galli M, et al. 2017; Integrated sources of photon quantum states based on nonlinear optics. Light Sci Appl. 6:e17100. DOI: 10.1038/lsa.2017.100. PMID: 30167217. PMCID: PMC6062040.
Article
35. Tai Q, You P, Sang H, Liu Z, Hu C, Chan HL, et al. 2016; Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun. 7:11105. DOI: 10.1038/ncomms11105. PMID: 27033249. PMCID: PMC4821988.
Article
36. Pacella D. 2015; Energy-resolved X-ray detectors: the future of diagnostic imaging. Rep Med Imaging. 8:1–13. DOI: 10.2147/RMI.S50045.
Article
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr