1. Castellino RA. Computer aided detection (CAD): an overview. Cancer Imaging. 2005; 5:17–19.
Article
2. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015; 175:1828–1837.
Article
3. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. CVPR. 2017; arXiv:1512.03385.
Article
4. Graves A, Mohamed AR, Hinton G. Speech Recognition with Deep Recurrent Neural Networks. ICASSP. 2013; arXiv:1303.5778.
Article
5. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316:2402–2410.
Article
6. Miotto R, Li L, Kidd BA, Dudleya JT. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016; 6:26094.
Article
7. Lo SB, Lou S, Lin JS, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995; 14:711–718.
Article
8. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998; 86:2278–2324.
Article
9. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In : Advances in Neural Information Processing System; 2012. p. 1097–1105.
10. He K, Zhang X, Ren S, Sun S. Deep Residual Learning for Image Recognition. In : IEEE Conference on Computer Vision and Pattern Recognition; 2016.
12. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542:115–118.
Article
13. Xu T, Zhang H, Huang X, Zhang S, Metaxas DN. Multimodal Deep Learning for Cervical Dysplasia Diagnosis. Lect Notes Comput Sci. 2016; 9901:115–123.
Article
16. Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. In : Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis; p. 94140V.
17. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T. , Komatsu K, et al. Development of a Digital Image Database for Chest Radiographs with and without a Lung Nodule: Receiver Operating Characteristic Analysis of Radiologists' Detection of Pulmonary Nodules. AJR Am J Roentgenol. 2000; 174:71–74.
Article
18. Bobadilla JCM, Pedrini H. Lung Nodule Classification Based on Deep Convolutional Neural Networks. In : Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; 2017. p. 117–124.
19. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996; 15:598–610.
Article
20. Jamieson AR, Drukker K, Giger ML. Breast image feature learning with adaptive deconvolutional networks. In : Proc. SPIE 8315, Medical Imaging 2012: Computer-Aided Diagnosis; p. 831506.
21. Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic lesion. Med Image Anal. 2017; 35:303–312.
Article
22. Hwang S, Kim HE. Self-Transfer Learning for Fully Weakly Supervised Object Localization. arXiv:1602.01625.
23. Wang J, Yang X, Cai H, Tan W, Jin C, Li L. Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning. Sci Rep. 2016; 6:27327.
Article
24. Geras KJ, Wolfson S, Kim SG, Moy L, Cho K. High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks. arXiv:1703.07047.
25. Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Med Phys. 2016; 43:6654.
Article
26. Fotin SV, Yin Y, Haldankar H, Hoffmeister JW, Periaswamy S. Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches. In : Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis; p. 97850X.
27. Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, Zheng H. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics. 2016; 72:150–157.
Article
28. Dalmis MU, Litjens GJ, Holland K, Setio AAA, Mann RM, Karssemeijer N, et al. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys. 2017; 44:533–546.
Article