Anesth Pain Med.  2022 Apr;17(2):157-164. 10.17085/apm.21066.

Effects of chlorpheniramine on emergence agitation after general anesthesia for ureteroscopic stone surgery: a retrospective cohort study

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea

Abstract

Background
The presence of a urinary catheter, postoperative pain, and postoperative nausea and vomiting are risk factors for emergence agitation (EA). Antimuscarinic agents are primary agents used in the prevention and treatment of urinary catheter-related bladder discomfort. Chlorpheniramine has antimuscarinic, antinociceptive, and antiemetic effects. This retrospective study investigated the role of chlorpheniramine in EA prevention following ureteroscopic stone surgery. Methods: Of 110 adult patients who underwent ureteroscopic stone surgery under general anesthesia between January and December 2019, the medical records of 93 patients were analyzed retrospectively. The patients were divided into control (n = 52) and chlorpheniramine (n = 41) groups according to the receipt of intravenous chlorpheniramine before the induction of anesthesia. The incidence and severity of EA were compared between the groups as primary and secondary endpoints, respectively. The effects of chlorpheniramine on the requirement for inhalation anesthetic (desflurane) during surgery, changes in mean blood pressure and heart rate during emergence, and adverse events were also compared. Results: The incidence (21.2% in the control group, 24.4% in the chlorpheniramine group) and severity of EA did not differ between groups. The intraoperative requirement for desflurane, changes in mean blood pressure and heart rate during emergence, and adverse events were also similar between groups. Conclusions: Chlorpheniramine was not associated with a decrease in EA incidence or severity in patients who underwent ureteroscopic stone surgery

Keyword

Anesthesia; Chlorpheniramine; Emergence agitation; Incidence; Urinary catheter

Figure

  • Fig. 1. Flow diagram.

  • Fig. 2. Changes in mean blood pressure (A) and heart rate (B). (A) Mean blood pressure showed no intergroup difference at any of time point; P = 0.591, 0.013, 0.209, and 0.021 at T1–T4, respectively. (B) Heart rate also showed no intergroup difference at any of time point; P = 0.803, 0.958, 0.503, and 0.341 at T1–T4, respectively. In the intergroup comparison of mean blood pressure and heart rate, P < 0.0125 was considered statistically significant (i.e., 0.05/4 = 0.0125, Bonferroni correction). T1 = before induction of anesthesia (baseline), T2 = at the end of surgery, T3 = at extubation, T4 = 5 min after extubation. Data are presented as mean ± SD. *P < 0.05 vs. baseline in each group (Bonferroni corrected).


Reference

1. Fields A, Huang J, Schroeder D, Sprung J, Weingarten T. Agitation in adults in the post-anaesthesia care unit after general anaesthesia. Br J Anaesth. 2018; 121:1052–8.
Article
2. Lee SJ, Sung TY. Emergence agitation: current knowledge and unresolved questions. Korean J Anesthesiol. 2020; 73:471–85.
Article
3. Yu D, Chai W, Sun X, Yao L. Emergence agitation in adults: risk factors in 2,000 patients. Can J Anaesth. 2010; 57:843–8.
Article
4. Kim HC, Kim E, Jeon YT, Hwang JW, Lim YJ, Seo JH, et al. Postanaesthetic emergence agitation in adult patients after general anaesthesia for urological surgery. J Int Med Res. 2015; 43:226–35.
Article
5. Hur M, Park SK, Yoon HK, Yoo S, Lee HC, Kim WH, et al. Comparative effectiveness of interventions for managing postoperative catheter-related bladder discomfort: a systematic review and network meta-analysis. J Anesth. 2019; 33:197–208.
Article
6. van Schoor J. Antihistamines: a brief review. Prof Nurs Today. 2012; 16:16–21.
7. Mahdy AM, Webster NR. Histamine and antihistamines. Anaesth Intensive Care Med. 2011; 12:324–9.
Article
8. Tzeng JI, Lin HT, Chen YW, Hung CH, Wang JJ. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats. Eur J Pharmacol. 2015; 752:55–60.
Article
9. Morita T, Tei Y, Shishido H, Inoue S. Chlorpheniramine maleate as an alternative to antiemetic cyclizine. J Pain Symptom Manage. 2004; 27:388–90.
Article
10. Rose DK. Recovery room problems or problems in the PACU. Can J Anaesth. 1996; 43(5 Pt 2):R116–28.
Article
11. Laguna JJ, Archilla J, Doña I, Corominas M, Gastaminza G, Mayorga C, et al. Practical guidelines for perioperative hypersensitivity reactions. J Investig Allergol Clin Immunol. 2018; 28:216–32.
Article
12. Abdellatif AA, Kamal MM, Ishak RA. Addition of dexamethasone–chlorpheniramine mixture reduces the incidence of vomiting associated with oral ketamine premedication after pediatric dental procedures. Ain-Shams J Anaesthesiol. 2016; 9:478–84.
Article
13. Lee SJ, Choi SJ, In CB, Sung TY. Effects of tramadol on emergence agitation after general anesthesia for nasal surgery: a retrospective cohort study. Medicine (Baltimore). 2019; 98:e14763.
14. Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999; 27:1325–9.
Article
15. Vlajkovic GP, Sindjelic RP. Emergence delirium in children: many questions, few answers. Anesth Analg. 2007; 104:84–91.
Article
16. Cohen IT, Hannallah RS, Hummer KA. The incidence of emergence agitation associated with desflurane anesthesia in children is reduced by fentanyl. Anesth Analg. 2001; 93:88–91.
Article
17. Hahm TS, Kim CS, Koo MS, Shin BS, Hwang HY, Lee SM, et al. The effect of H1-receptor antagonist on hemodynamic change during anesthesia. Korean J Anesthesiol. 2006; 51:395–9.
Article
18. Lorenz W, Duda D, Dick W, Sitter H, Doenicke A, Black A, et al. Incidence and clinical importance of perioperative histamine release: randomised study of volume loading and antihistamines after induction of anaesthesia. Trial Group Mainz/Marburg. Lancet. 1994; 343:933–40.
19. Raffa RB. Antihistamines as analgesics. J Clin Pharm Ther. 2001; 26:81–5.
Article
20. Ergenoglu P, Akin S, Yalcin Cok O, Eker E, Kuzgunbay B, Turunc T, et al. Effect of intraoperative paracetamol on catheter-related bladder discomfort: a prospective, randomized, double-blind study. Curr Ther Res Clin Exp. 2012; 73:186–94.
Article
21. Kim JA, Min JH, Lee HS, Jo HR, Je UJ, Paek JH. Effects of glycopyrrolate premedication on preventing postoperative catheter-related bladder discomfort in patients receiving ureteroscopic removal of ureter stone. Korean J Anesthesiol. 2016; 69:563–7.
Article
22. In CB, Lee SJ, Sung TY, Cho CK, Jee YS. Effects of chlorpheniramine maleate on catheter-related bladder discomfort in patients undergoing ureteroscopic stone removal: a randomized double-blind study. Int J Med Sci. 2021; 18:1075–81.
Article
23. Simons FE. H1-antihistamines: more relevant than ever in the treatment of allergic disorders. J Allergy Clin Immunol. 2003; 112(4 Suppl):S42–52.
24. Abdelrahman TN, Kasem AA. Role of preemptive chlorpheniramine maleate in reducing postoperative agitation after functional endoscopic sinus surgeries (FESS). Ain-Shams J Anesthesiol. 2020; 12:26.
Article
25. Chen L, Xu M, Li GY, Cai WX, Zhou JX. Incidence, risk factors and consequences of emergence agitation in adult patients after elective craniotomy for brain tumor: a prospective cohort study. PLoS One. 2014; 9:e114239.
Article
26. Keles S, Kocaturk O. Postoperative discomfort and emergence delirium in children undergoing dental rehabilitation under general anesthesia: comparison of nasal tracheal intubation and laryngeal mask airway. J Pain Res. 2018; 11:103–10.
Article
27. Frederick HJ, Wofford K, de Lisle Dear G, Schulman SR. A randomized controlled trial to determine the effect of depth of anesthesia on emergence agitation in children. Anesth Analg. 2016; 122:1141–6.
Article
28. Holzki J, Kretz FJ. Changing aspects of sevoflurane in paediatric anaesthesia: 1975-99. Paediatr Anaesth. 1999; 9:283–6.
Article
29. Dahmani S, Stany I, Brasher C, Lejeune C, Bruneau B, Wood C, et al. Pharmacological prevention of sevoflurane- and desflurane-related emergence agitation in children: a meta-analysis of published studies. Br J Anaesth. 2010; 104:216–23.
Article
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr