J Rheum Dis.  2022 Jul;29(3):140-153. 10.4078/jrd.2022.29.3.140.

The Mechanism of the NLRP3 Inflammasome Activation and Pathogenic Implication in the Pathogenesis of Gout

Affiliations
  • 1Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea

Abstract

The NACHT, LRR, and PYD-domains-containing protein 3 (NLRP3) inflammasome is an intracellular multi-protein signaling platform that is activated by cytosolic pattern-recognition receptors such as NLRs against endogenous and exogenous pathogens. Once it is activated by a variety of danger signals, recruitment and assembly of NLRP3, ASC, and pro-caspase-1 trigger the processing and release of pro-inflammatory cytokines including interleukin-1β (IL-1β) and IL-18. Multiple intracellular and extracellular structures and molecular mechanisms are involved in NLRP3 inflammasome activation. Gout is an autoinflammatory disease induced by inflammatory response through production of NLRP3 inflammasome-mediated proinflammatory cytokines such as IL-1β by deposition of monosodium urate (MSU) crystals in the articular joints and periarticular structures. NLRP3 inflammasome is considered a main therapeutic target in MSU crystal-induced inflammation in gout. Novel therapeutic strategies have been proposed to control acute flares of gouty arthritis and prophylaxis for gout flares through modulation of the NLRP3/IL-1 axis pathway. This review discusses the basic mechanism of NLRP3 inflammasome activation and the IL-1-induced inflammatory cascade and explains the NLRP3 inflammasome-induced pathogenic role in the pathogenesis of gout.

Keyword

NLRP3; Inflammasome; Gout; Interleukin-1; Monosodium urate

Figure

  • Fig. 1 Schematic structure of NLRP3 inflammasome complex. The NLRP3 inflammasome complex consists of the NLRP3 scaffold, the ASC adaptor, and pro-caspase-1 proteins. Deletion of the CARD domain and activation of caspase-1 domain of pro-caspase-1 leads to formation of active caspase-1, then resulting in cleavage from pro-IL-1β to IL-1β. ASC: apoptosis-associated speck-like protein, CARD: caspase activation and recruitment domain, IL: interleukin, LRR: leucine-rich repeat, NACHT: neuronal apoptosis inhibitory protein (NAIP), MHC class II transcription activator (CIITA), incompatibility locus protein from Podospora anserina (HET-E), and telomerase-associated protein (TP1), NLRP3: NACHT, LRR, and PYD domains-containing protein 3, PYD: pyrin domain.

  • Fig. 2 Signal pathway for NLRP3 inflammasome activation. Activation of the NLRP3 inflammasome is essential for two steps such as priming (signal 1) and activation (signal 2). In priming step, activation of TLR or TNFR after exposure of danger signals facilitates NF-κB signaling pathway for initiating transcription and production of precursor of pro-inflammatory cytokine including pro-IL-1β and pro-IL-18. Next, sensing PAMPs or DAMPs triggers NLRP3 oligomerization and ASC and pro-caspase-1 recruitment (signal 2). Autocleavage and activation of caspase-1 results in maturation and release of pro-inflammatory cytokines IL-1β and IL-18. PAMPs: pathogen-associated molecular patterns, DAMPs: damage-associated molecular patterns, ASC: apoptosis-associated speck-like protein, CARD: caspase activation and recruitment domain, TLR: toll-like receptor, TNFR: tumor necrosis factor receptor, ROS: reactive oxygen species, IKK: IκB kinase, IL: interleukin, NF-κB: nuclear factor-κB, NACHT: neuronal apoptosis inhibitory protein (NAIP), MHC class II transcription activator (CIITA), incompatibility locus protein from Podospora anserina (HET-E), and telomerase-associated protein (TP1), NLRP3: NACHT, LRR, and PYD domains-containing protein 3.

  • Fig. 3 Mechanism for IL-1β/IL-1R-related inflammatory signaling pathway. IL-1β/IL-1R complex is generated by the heterodimer signaling receptors and cytokine. The TIR domain, an intercellular signaling protein motif between receptors and adaptors, associates with adaptor MyD88, thus resulting in recruitment of IRAK and dimerized TRAF6. This subsequently activates multiple downstream signaling pathways including IκB-kinase complex and MAPK. Activation of transcription factors including NF-κB and AP-1 results in diverse pro-inflammatory cytokines and chemokines. IL-1β: interleukin-1β, IL-1RI: interleukin-1 receptor type I, TIR: toll/interleukin-1 receptor, MyD88: myeloid differentiation primary response 88, IRAK: interleukin-1 receptor associated kinase, TRAF6: TNF receptor-associated factor 6, TNF: tumor necrosis factor, NF-κB: nuclear factor-κB.


Reference

1. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. 2021; Gout. Lancet. 397:1843–55. Erratum in: Lancet 2021;397:1808. DOI: 10.1016/S0140-6736(21)00569-9.
Article
2. Busso N, So A. 2010; Mechanisms of inflammation in gout. Arthritis Res Ther. 12:206. DOI: 10.1186/ar2952. PMID: 20441605. PMCID: PMC2888190.
Article
3. Nuki G, Simkin PA. 2006; A concise history of gout and hyperuricemia and their treatment. Arthritis Res Ther. 8(Suppl 1):S1. DOI: 10.1186/ar1906. PMID: 16820040. PMCID: PMC3226106.
4. Freudweiler M. 1899; Experimentelle untersuchungen uber das wesen der gichtknoten. Dtsch Arch Klin Med. 63:266–335. German.
5. McCarty DJ, Hollander JL. 1961; Identification of urate crystals in gouty synovial fluid. Ann Intern Med. 54:452–60. DOI: 10.7326/0003-4819-54-3-452. PMID: 13773775.
Article
6. Scanu A, Oliviero F, Ramonda R, Frallonardo P, Dayer JM, Punzi L. 2012; Cytokine levels in human synovial fluid during the different stages of acute gout: role of transforming growth factor β1 in the resolution phase. Ann Rheum Dis. 71:621–4. DOI: 10.1136/annrheumdis-2011-200711. PMID: 22294622.
Article
7. Rock KL, Kataoka H, Lai JJ. 2013; Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 9:13–23. DOI: 10.1038/nrrheum.2012.143. PMID: 22945591. PMCID: PMC3648987.
Article
8. Jo EK, Kim JK, Shin DM, Sasakawa C. 2016; Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13:148–59. DOI: 10.1038/cmi.2015.95. PMID: 26549800. PMCID: PMC4786634.
Article
9. Kingsbury SR, Conaghan PG, McDermott MF. 2011; The role of the NLRP3 inflammasome in gout. J Inflamm Res. 4:39–49. DOI: 10.2147/JIR.S11330. PMID: 22096368. PMCID: PMC3218743.
10. Paludan SR, Pradeu T, Masters SL, Mogensen TH. 2021; Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol. 21:137–50. DOI: 10.1038/s41577-020-0391-5. PMID: 32782357. PMCID: PMC7418297.
Article
11. Martinon F, Mayor A, Tschopp J. 2009; The inflammasomes: guardians of the body. Annu Rev Immunol. 27:229–65. DOI: 10.1146/annurev.immunol.021908.132715. PMID: 19302040.
Article
12. Martinon F, Burns K, Tschopp J. 2002; The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–26. DOI: 10.1016/S1097-2765(02)00599-3.
13. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. 2009; Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–91. DOI: 10.4049/jimmunol.0901363. PMID: 19570822. PMCID: PMC2824855.
Article
14. McGeough MD, Wree A, Inzaugarat ME, Haimovich A, Johnson CD, Peña CA, et al. 2017; TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest. 127:4488–97. DOI: 10.1172/JCI90699. PMID: 29130929. PMCID: PMC5707143.
Article
15. Schroder K, Sagulenko V, Zamoshnikova A, Richards AA, Cridland JA, Irvine KM, et al. 2012; Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology. 217:1325–9. DOI: 10.1016/j.imbio.2012.07.020. PMID: 22898390.
Article
16. Franchi L, Eigenbrod T, Núñez G. 2009; Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 183:792–6. DOI: 10.4049/jimmunol.0900173. PMID: 19542372. PMCID: PMC2754237.
Article
17. Groslambert M, Py BF. 2018; Spotlight on the NLRP3 inflammasome pathway. J Inflamm Res. 11:359–74. DOI: 10.2147/JIR.S141220. PMID: 30288079. PMCID: PMC6161739.
Article
18. Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, et al. 2014; FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 192:1835–46. DOI: 10.4049/jimmunol.1302839. PMID: 24453255. PMCID: PMC3933570.
Article
19. Bauernfeind F, Bartok E, Rieger A, Franchi L, Núñez G, Hornung V. 2011; Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 187:613–7. DOI: 10.4049/jimmunol.1100613. PMID: 21677136. PMCID: PMC3131480.
Article
20. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. 2012; Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 287:36617–22. DOI: 10.1074/jbc.M112.407130. PMID: 22948162. PMCID: PMC3476327.
Article
21. Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li X, et al. 2014; IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A. 111:775–80. Erratum in: Proc Natl Acad Sci U S A 2014;111:3195. DOI: 10.1073/pnas.1320294111. PMID: 24379360. PMCID: PMC3896167.
Article
22. Cookson BT, Brennan MA. 2001; Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–4. DOI: 10.1016/S0966-842X(00)01936-3.
Article
23. Laudisi F, Spreafico R, Evrard M, Hughes TR, Mandriani B, Kandasamy M, et al. 2013; Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol. 191:1006–1. DOI: 10.4049/jimmunol.1300489. PMID: 23817414. PMCID: PMC3718202.
Article
24. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, et al. 2001; Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem. 276:125–32. DOI: 10.1074/jbc.M006781200. PMID: 11016935.
25. Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008; Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 320:674–7. DOI: 10.1126/science.1156995. PMID: 18403674. PMCID: PMC2396588.
Article
26. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. 2006; Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440:237–41. DOI: 10.1038/nature04516. PMID: 16407889.
Article
27. Perregaux D, Gabel CA. 1994; Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem. 269:15195–203. DOI: 10.1016/S0021-9258(17)36591-2.
Article
28. Kahlenberg JM, Dubyak GR. 2004; Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 286:C1100–8. DOI: 10.1152/ajpcell.00494.2003. PMID: 15075209.
29. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. 2007; Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14:1583–9. DOI: 10.1038/sj.cdd.4402195. PMID: 17599094.
Article
30. Pelegrin P, Surprenant A. 2006; Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25:5071–82. DOI: 10.1038/sj.emboj.7601378. PMID: 17036048. PMCID: PMC1630421.
Article
31. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, et al. 2006; The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 176:3877–83. Erratum in: J Immunol 2007;179:8569. DOI: 10.4049/jimmunol.176.7.3877. PMID: 16547218.
Article
32. Greaney AJ, Leppla SH, Moayeri M. 2015; Bacterial exotoxins and the inflammasome. Front Immunol. 6:570. DOI: 10.3389/fimmu.2015.00570. PMID: 26617605. PMCID: PMC4639612.
Article
33. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. 2013; K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38:1142–53. DOI: 10.1016/j.immuni.2013.05.016. PMID: 23809161. PMCID: PMC3730833.
Article
34. Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, et al. 2012; The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 492:123–7. DOI: 10.1038/nature11588. PMID: 23143333. PMCID: PMC4175565.
Article
35. Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, et al. 2012; Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A. 109:11282–7. DOI: 10.1073/pnas.1117765109. PMID: 22733741. PMCID: PMC3396518.
Article
36. Duchen MR. 2000; Mitochondria and calcium: from cell signalling to cell death. J Physiol. 529:57–68. DOI: 10.1111/j.1469-7793.2000.00057.x. PMID: 11080251. PMCID: PMC2270168.
Article
37. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. 2006; Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol. 291:C1082–8. DOI: 10.1152/ajpcell.00217.2006. PMID: 16760264.
38. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. 2008; The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 9:857–65. DOI: 10.1038/ni.1636. PMID: 18604209. PMCID: PMC3101478.
Article
39. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. 2008; Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–56. DOI: 10.1038/ni.1631. PMID: 18604214. PMCID: PMC2834784.
Article
40. Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA, Rock KL. 2015; Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J Immunol. 195:1685–97. Erratum in: J Immunol 2016;196:503. DOI: 10.4049/jimmunol.1500509. PMID: 26195813. PMCID: PMC4530060.
Article
41. Barlan AU, Griffin TM, McGuire KA, Wiethoff CM. 2011; Adenovirus membrane penetration activates the NLRP3 inflammasome. J Virol. 85:146–55. DOI: 10.1128/JVI.01265-10. PMID: 20980503. PMCID: PMC3014182.
Article
42. Gupta R, Ghosh S, Monks B, DeOliveira RB, Tzeng TC, Kalantari P, et al. 2014; RNA and β-hemolysin of group B Streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J Biol Chem. 289:13701–5. DOI: 10.1074/jbc.C114.548982. PMID: 24692555. PMCID: PMC4022842.
Article
43. Zhou R, Yazdi AS, Menu P, Tschopp J. 2011; A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–5. Erratum in: Nature 2011;475:122. DOI: 10.1038/nature09663. PMID: 21124315.
Article
44. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. 2011; Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 12:222–30. DOI: 10.1038/ni.1980. PMID: 21151103. PMCID: PMC3079381.
Article
45. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. 2012; Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–14. DOI: 10.1016/j.immuni.2012.01.009. PMID: 22342844. PMCID: PMC3312986.
Article
46. Saïd-Sadier N, Padilla E, Langsley G, Ojcius DM. 2010; Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One. 5:e10008. DOI: 10.1371/journal.pone.0010008. PMID: 20368800. PMCID: PMC2848854.
Article
47. Pietrella D, Pandey N, Gabrielli E, Pericolini E, Perito S, Kasper L, et al. 2013; Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur J Immunol. 43:679–92. DOI: 10.1002/eji.201242691. PMID: 23280543.
48. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. 2016; NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 17:250–8. DOI: 10.1038/ni.3333. PMID: 26642356. PMCID: PMC4862588.
Article
49. He Y, Zeng MY, Yang D, Motro B, Núñez G. 2016; NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 530:354–7. DOI: 10.1038/nature16959. PMID: 26814970. PMCID: PMC4810788.
Article
50. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD, et al. 2000; Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol. 164:6287–95. DOI: 10.4049/jimmunol.164.12.6287. PMID: 10843682.
Article
51. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, et al. 1999; Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 274:21645–50. DOI: 10.1074/jbc.274.31.21645. PMID: 10419473.
Article
52. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. 2010; Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–40. DOI: 10.1038/ni.1831. PMID: 20023662.
Article
53. Medzhitov R, Janeway C Jr. 2000; Innate immune recognition: mechanisms and pathways. Immunol Rev. 173:89–97. DOI: 10.1034/j.1600-065X.2000.917309.x. PMID: 10719670.
Article
54. Shi Y, Evans JE, Rock KL. 2003; Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 425:516–21. DOI: 10.1038/nature01991. PMID: 14520412.
Article
55. Kippen I, Klinenberg JR, Weinberger A, Wilcox WR. 1974; Factors affecting urate solubility in vitro. Ann Rheum Dis. 33:313–7. DOI: 10.1136/ard.33.4.313. PMID: 4413418. PMCID: PMC1006264.
Article
56. Yagnik DR, Hillyer P, Marshall D, Smythe CD, Krausz T, Haskard DO, et al. 2000; Noninflammatory phagocytosis of monosodium urate monohydrate crystals by mouse macrophages. Implications for the control of joint inflammation in gout. Arthritis Rheum. 43:1779–89. DOI: 10.1002/1529-0131(200008)43:8<1779::AID-ANR14>3.0.CO;2-2.
Article
57. Landis RC, Yagnik DR, Florey O, Philippidis P, Emons V, Mason JC, et al. 2002; Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum. 46:3026–33. DOI: 10.1002/art.10614. PMID: 12428246.
Article
58. Giamarellos-Bourboulis EJ, Mouktaroudi M, Bodar E, van der Ven J, Kullberg BJ, Netea MG, et al. 2009; Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process. Ann Rheum Dis. 68:273–8. DOI: 10.1136/ard.2007.082222. PMID: 18390571.
59. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. 2005; Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52:2936–46. DOI: 10.1002/art.21238. PMID: 16142712.
Article
60. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, et al. 2006; MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest. 116:2262–71. DOI: 10.1172/JCI28075. PMID: 16886064. PMCID: PMC1523415.
Article
61. Scott P, Ma H, Viriyakosol S, Terkeltaub R, Liu-Bryan R. 2006; Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol. 177:6370–8. DOI: 10.4049/jimmunol.177.9.6370. PMID: 17056568.
Article
62. Holzinger D, Nippe N, Vogl T, Marketon K, Mysore V, Weinhage T, et al. 2014; Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 66:1327–39. DOI: 10.1002/art.38369. PMID: 24470119.
Article
63. So AK, Martinon F. 2017; Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 13:639–47. DOI: 10.1038/nrrheum.2017.155. PMID: 28959043.
Article
64. Kim SK, Choe JY, Park KY. 2019; Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7. Biochem Biophys Res Commun. 517:338–45. DOI: 10.1016/j.bbrc.2019.07.087. PMID: 31358323.
Article
65. Kim SK, Choe JY, Park KY. 2019; TXNIP-mediated nuclear factor-κB signaling pathway and intracellular shifting of TXNIP in uric acid-induced NLRP3 inflammasome. Biochem Biophys Res Commun. 511:725–31. DOI: 10.1016/j.bbrc.2019.02.141. PMID: 30833078.
Article
66. Fields JK, Günther S, Sundberg EJ. 2019; Structural basis of IL-1 family cytokine signaling. Front Immunol. 10:1412. DOI: 10.3389/fimmu.2019.01412. PMID: 31281320. PMCID: PMC6596353.
Article
67. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. 2019; The role of interleukin-1 in general pathology. Inflamm Regen. 39:12. DOI: 10.1186/s41232-019-0101-5. PMID: 31182982. PMCID: PMC6551897.
Article
68. Dinarello CA. 2011; Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 117:3720–32. DOI: 10.1182/blood-2010-07-273417. PMID: 21304099. PMCID: PMC3083294.
Article
69. Mariotte A, De Cauwer A, Po C, Abou-Faycal C, Pichot A, Paul N, et al. 2020; A mouse model of MSU-induced acute inflammation in vivo suggests imiquimod-dependent targeting of Il-1β as relevant therapy for gout patients. Theranostics. 10:2158–71. DOI: 10.7150/thno.40650. PMID: 32104502. PMCID: PMC7019178.
Article
70. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. 2015; Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 33:49–77. DOI: 10.1146/annurev-immunol-032414-112306. PMID: 25493334.
Article
71. Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M. 2009; Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 60:3642–50. DOI: 10.1002/art.24959. PMID: 19950258. PMCID: PMC2847793.
Article
72. Joosten LA, Crişan TO, Azam T, Cleophas MC, Koenders MI, van de Veerdonk FL, et al. 2016; Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann Rheum Dis. 75:1219–27. DOI: 10.1136/annrheumdis-2014-206966. PMID: 26174021.
Article
73. FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, et al. 2020; 2020 American College of Rheumatology guideline for the management of gout. Arthritis Rheumatol. 72:879–95. Erratum in: Arthritis Rheumatol 2021;73:413. DOI: 10.1002/art.41688. PMID: 33638303.
Article
74. Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, et al. 2007; (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 321:509–16. DOI: 10.1124/jpet.106.111344. PMID: 17289835.
Article
75. Zhang Y, Zheng Y. 2016; Effects and mechanisms of potent caspase-1 inhibitor VX765 treatment on collagen-induced arthritis in mice. Clin Exp Rheumatol. 34:111–8.
76. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. 2015; A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 21:248–55. DOI: 10.1038/nm.3806. PMID: 25686105. PMCID: PMC4392179.
Article
77. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, et al. 2017; Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 214:3219–38. DOI: 10.1084/jem.20171419. PMID: 29021150. PMCID: PMC5679172.
Article
78. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, et al. 2018; Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med. 10:e8689. DOI: 10.15252/emmm.201708689.
Article
79. Kim SK, Choe JY, Park KY. 2016; Rebamipide suppresses monosodium urate crystal-induced interleukin-1β production through regulation of oxidative stress and caspase-1 in THP-1 cells. Inflammation. 39:473–82. DOI: 10.1007/s10753-015-0271-5. PMID: 26454448.
Article
80. So A, De Smedt T, Revaz S, Tschopp J. 2007; A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 9:R28. DOI: 10.1186/ar2143. PMID: 17352828. PMCID: PMC1906806.
Article
81. Ghosh P, Cho M, Rawat G, Simkin PA, Gardner GC. 2013; Treatment of acute gouty arthritis in complex hospitalized patients with anakinra. Arthritis Care Res (Hoboken). 65:1381–4. DOI: 10.1002/acr.21989. PMID: 23650178.
Article
82. Ottaviani S, Moltó A, Ea HK, Neveu S, Gill G, Brunier L, et al. 2013; Efficacy of anakinra in gouty arthritis: a retrospective study of 40 cases. Arthritis Res Ther. 15:R123. DOI: 10.1186/ar4303. PMID: 24432362. PMCID: PMC3978950.
Article
83. Schlesinger N, Alten RE, Bardin T, Schumacher HR, Bloch M, Gimona A, et al. 2012; Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 71:1839–48. DOI: 10.1136/annrheumdis-2011-200908. PMID: 22586173.
Article
84. Schlesinger N, Mysler E, Lin HY, De Meulemeester M, Rovensky J, Arulmani U, et al. 2011; Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann Rheum Dis. 70:1264–71. DOI: 10.1136/ard.2010.144063. PMID: 21540198. PMCID: PMC3103669.
Article
Full Text Links
  • JRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr