Clin Endosc.  2022 May;55(3):434-442. 10.5946/ce.2021.161.

Laser-cut-type versus braided-type covered self-expandable metallic stents for distal biliary obstruction caused by pancreatic carcinoma: a retrospective comparative cohort study

Affiliations
  • 1Department of Gastroenterology, Nara Medical University, Nara, Japan

Abstract

Background/Aims
Covered self-expandable metallic stents (CMSs) are widely used for malignant distal biliary obstructions (MDBOs) caused by pancreatic carcinoma. This study compared the efficacy and safety of the laser-cut-type and braided-type CMSs.
Methods
To palliate MDBOs caused by pancreatic carcinoma, the laser-cut-type CMSs was used from April 2014 to March 2017, and the braided-type CMSs was used from April 2017 to March 2019. The tested self-expandable metallic stents were equipped with different anti-migration systems.
Results
In total, 47 patients received CMSs for MDBOs (24 laser-cut type, 23 braided-type). The time to recurrent biliary obstruction (TRBO) was significantly longer in the braided-type CMSs (p=0.0008), and the median time to stent dysfunction or patient death was 141 and 265 days in the laser-cut-type CMSs and braided-type CMSs, respectively (p=0.0023). Stent migration was the major cause of stent dysfunction in both groups, which occurred in 37.5% of the laser-cut-type CMSs and 13.0% of the braidedtype CMSs. There were no differences in the survival duration between the groups.
Conclusions
The TRBO was significantly longer for the braided-type CMSs with an anti-migration system than for the laser-cuttype. Stent migration tended to be less frequent with the braided-type CMSs than with the laser-cut-type CMSs.

Keyword

Adverse effects; Biliary tract; Self-expandable metallic stents

Figure

  • Fig. 1. Patient flowchart of the study. SEMS, self-expandable metallic stent; MDBO, malignant distal biliary obstruction; CMS, covered self-expandable metallic stent; UMS, uncovered self-expandable metallic stent.

  • Fig. 2. Kaplan-Meier graph showing the overall survival duration of the patients. No significant difference in the overall survival duration was observed between the laser-cut-type and braided-type CMS groups. CMS, covered self-expandable metallic stent.

  • Fig. 3. Kaplan-Meier curve showing the stent patency. Cumulative stent patency was significantly higher for the braided-type CMS than for the laser-cut-type CMS. CMS, covered self-expandable metallic stent. a)Because most patients died by the time stent dysfunction occurred, the median time for stent patency could not be calculated.

  • Fig. 4. Kaplan-Meier curve showing the cumulative patient survival without stent dysfunction. The cumulative time to stent dysfunction or patient death was significantly higher in the braided-type CMS group than in the laser-cut-type CMS group. CMS, covered self-expandable metallic stent.


Reference

1. Soehendra N, Reynders-Frederix V. Palliative bile duct drainage: a new endoscopic method of introducing a transpapillary drain. Endoscopy. 1980; 12:8–11.
2. Huibregtse K, Tytgat GN. Palliative treatment of obstructive jaundice by transpapillary introduction of large bore bile duct endoprosthesis. Gut. 1982; 23:371–375.
3. Walta DC, Fausel CS, Brant B. Endoscopic biliary stents and obstructive jaundice. Am J Surg. 1987; 153:444–447.
4. Speer AG, Cotton PB, MacRae KD. Endoscopic management of malignant biliary obstruction: stents of 10 French gauge are preferable to stents of 8 French gauge. Gastrointest Endosc. 1988; 34:412–417.
5. Huibregtse K, Cheng J, Coene PP, et al. Endoscopic placement of expandable metal stents for biliary strictures: a preliminary report on experience with 33 patients. Endoscopy. 1989; 21:280–282.
6. Davids PH, Groen AK, Rauws EA, et al. Randomised trial of self-expanding metal stents versus polyethylene stents for distal malignant biliary obstruction. Lancet. 1992; 340:1488–1492.
7. Knyrim K, Wagner HJ, Pausch J, et al. A prospective, randomized, controlled trial of metal stents for malignant obstruction of the common bile duct. Endoscopy. 1993; 25:207–212.
8. Lammer J, Hausegger KA, Fluckiger F, et al. Common bile duct obstruction due to malignancy: treatment with plastic versus metal stents. Radiology. 1996; 201:167–172.
9. Prat F, Chapat O, Ducot B, et al. A randomized trial of endoscopic drainage methods for inoperable malignant strictures of the common bile duct. Gastrointest Endosc. 1998; 47:1–7.
10. Isayama H, Yasuda I, Ryozawa S, et al. Results of a Japanese multicenter, randomized trial of endoscopic stenting for non-resectable pancreatic head cancer (JM-test): covered wallstent versus doublelayer stent. Dig Endosc. 2011; 23:310–315.
11. Isayama H, Komatsu Y, Tsujino T, et al. A prospective randomised study of “covered” versus “uncovered” diamond stents for the management of distal malignant biliary obstruction. Gut. 2004; 53:729–734.
12. Kitano M, Yamashita Y, Tanaka K, et al. Covered self-expandable metal stents with an anti-migration system improve patency duration without increased complications compared with uncovered stents for distal biliary obstruction caused by pancreatic carcinoma: a randomized multicenter trial. Am J Gastroenterol. 2013; 108:1713–1722.
13. Misra SP, Dwivedi M. Reflux of duodenal contents and cholangitis in patients undergoing self-expanding metal stent placement. Gastrointest Endosc. 2009; 70:317–321.
14. Okamoto T, Fujioka S, Yanagisawa S, et al. Placement of a metallic stent across the main duodenal papilla may predispose to cholangitis. Gastrointest Endosc. 2006; 63:792–796.
15. Kin T, Ishii K, Okabe Y, et al. Feasibility of biliary stenting to distal malignant biliary obstruction using a novel designed metal stent with duckbill-shaped anti-reflux valve. Dig Endosc. 2021; 33:648–655.
16. Kogure H, Ryozawa S, Maetani I, et al. A prospective multicenter study of a fully covered metal stent in patients with distal malignant biliary obstruction: WATCH-2 study. Dig Dis Sci. 2018; 63:2466–2473.
17. Park DH, Kim MH, Choi JS, et al. Covered versus uncovered wallstent for malignant extrahepatic biliary obstruction: a cohort comparative analysis. Clin Gastroenterol Hepatol. 2006; 4:790–796.
18. Isayama H, Mukai T, Itoi T, et al. Comparison of partially covered nitinol stents with partially covered stainless stents as a historical control in a multicenter study of distal malignant biliary obstruction: the WATCH study. Gastrointest Endosc. 2012; 76:84–92.
19. Kim JY, Ko GB, Lee TH, et al. Partially covered metal stents may not prolong stent patency compared to uncovered stents in unresectable malignant distal biliary obstruction. Gut Liver. 2017; 11:440–446.
20. Conio M, Mangiavillano B, Caruso A, et al. Covered versus uncovered self-expandable metal stent for palliation of primary malignant extrahepatic biliary strictures: a randomized multicenter study. Gastrointest Endosc. 2018; 88:283–291.e3.
21. Kullman E, Frozanpor F, Soderlund C, et al. Covered versus uncovered self-expandable nitinol stents in the palliative treatment of malignant distal biliary obstruction: results from a randomized, multicenter study. Gastrointest Endosc. 2010; 72:915–923.
22. Telford JJ, Carr-Locke DL, Baron TH, et al. A randomized trial comparing uncovered and partially covered self-expandable metal stents in the palliation of distal malignant biliary obstruction. Gastrointest Endosc. 2010; 72:907–914.
23. Yang MJ, Kim JH, Yoo BM, et al. Partially covered versus uncovered self-expandable nitinol stents with anti-migration properties for the palliation of malignant distal biliary obstruction: a randomized controlled trial. Scand J Gastroenterol. 2015; 50:1490–1499.
24. Ung KA, Stotzer PO, Nilsson A, et al. Covered and uncovered self-expandable metallic Hanarostents are equally efficacious in the drainage of extrahepatic malignant strictures: results of a double-blind randomized study. Scand J Gastroenterol. 2013; 48:459–465.
25. Costamagna G, Tringali A, Reddy DN, et al. A new partially covered nitinol stent for palliative treatment of malignant bile duct obstruction: a multicenter single-arm prospective study. Endoscopy. 2011; 43:317–324.
26. Gomez-Oliva C, Guarner-Argente C, Concepcion M, et al. Partially covered self-expanding metal stent for unresectable malignant extrahepatic biliary obstruction: results of a large prospective series. Surg Endosc. 2012; 26:222–229.
27. Soderlund C, Linder S, Bergenzaun PE, et al. Nitinol versus steel partially covered self-expandable metal stent for malignant distal biliary obstruction: a randomized trial. Endoscopy. 2014; 46:941–948.
28. Yokota Y, Fukasawa M, Takano S, et al. Partially covered metal stents have longer patency than uncovered and fully covered metal stents in the management of distal malignant biliary obstruction: a retrospective study. BMC Gastroenterol. 2017; 17:105.
29. Isayama H, Nakai Y, Toyokawa Y, et al. Measurement of radial and axial forces of biliary self-expandable metallic stents. Gastrointest Endosc. 2009; 70:37–44.
30. Isayama H, Hamada T, Yasuda I, et al. TOKYO criteria 2014 for transpapillary biliary stenting. Dig Endosc. 2015; 27:259–264.
31. ASGE Standards of Practice Committee, Chandrasekhara V, Khashab MA, et al. Adverse events associated with ERCP. Gastrointest Endosc. 2017; 85:32–47.
32. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45:228–247.
33. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013; 48:452–458.
34. Yokoe M, Hata J, Takada T, et al. Tokyo guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos). J Hepatobiliary Pancreat Sci. 2018; 25:41–54.
35. Isayama H, Kawakubo K, Nakai Y, et al. A novel, fully covered laser-cut nitinol stent with antimigration properties for nonresectable distal malignant biliary obstruction: a multicenter feasibility study. Gut Liver. 2013; 7:725–730.
36. Saito K, Nakai Y, Isayama H, et al. A prospective multicenter study of partially covered metal stents in patients receiving neoadjuvant chemotherapy for resectable and borderline resectable pancreatic cancer: BTSNAC study. Gut Liver. 2021; 15:135–141.
37. Marui S, Uza N, Yamazaki H, et al. Utility of laser-cut covered self-expandable metal stents for unresectable malignant distal biliary obstruction: a single-center experience. Endoscopy. 2020; 52:664–668.
38. Park DH, Lee SS, Lee TH, et al. Anchoring flap versus flared end, fully covered self-expandable metal stents to prevent migration in patients with benign biliary strictures: a multicenter, prospective, comparative pilot study (with videos). Gastrointest Endosc. 2011; 73:64–70.
39. Minaga K, Kitano M, Imai H, et al. Evaluation of anti-migration properties of biliary covered self-expandable metal stents. World J Gastroenterol. 2016; 22:6917–6924.
40. Nakai Y, Isayama H, Mukai T, et al. Impact of anticancer treatment on recurrent obstruction in covered metallic stents for malignant biliary obstruction. J Gastroenterol. 2013; 48:1293–1299.
41. Nakai Y, Isayama H, Kogure H, et al. Risk factors for covered metallic stent migration in patients with distal malignant biliary obstruction due to pancreatic cancer. J Gastroenterol Hepatol. 2014; 29:1744–1749.
42. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011; 364:1817–1825.
43. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013; 369:1691–1703.
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr