2. Westwell-Roper C, Nackiewicz D, Dan M, Ehses JA. 2014; Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes. Immunol Cell Biol. 92:314–323. DOI:
10.1038/icb.2014.4. PMID:
24492799.
Article
3. Donath MY, Böni-Schnetzler M, Ellingsgaard H, Ehses JA. 2009; Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. Physiology (Bethesda). 24:325–331. DOI:
10.1152/physiol.00032.2009. PMID:
19996363.
4. Christensen CS, Christensen DP, Lundh M, Dahllöf MS, Haase TN, Velasquez JM, Laye MJ, Mandrup-Poulsen T, Solomon TP. 2015; Skeletal muscle to pancreatic β-cell cross-talk: the effect of humoral mediators liberated by muscle contraction and acute exercise on β-cell apoptosis. J Clin Endocrinol Metab. 100:E1289–E1298. Erratum in:
J Clin Endocrinol Metab. 2016;101:2265. DOI:
10.1210/jc.2014-4506. PMID:
26218753.
Article
5. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J. 2015; Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25:1285–1298. DOI:
10.1038/cr.2015.139. PMID:
26611636. PMCID:
PMC4670995.
Article
6. Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R, Gorka O, Heilig R, Meunier E, Dick MS, Ćiković T, Sodenkamp J, Médard G, Naumann R, Ruland J, Kuster B, Broz P, Groß O. 2017; The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep. 21:3846–3859. DOI:
10.1016/j.celrep.2017.12.018. PMID:
29281832. PMCID:
PMC5750195.
Article
7. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J. 2016; Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26:1007–1020. DOI:
10.1038/cr.2016.100. PMID:
27573174. PMCID:
PMC5034106.
Article
9. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. 2011; The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 17:179–188. DOI:
10.1038/nm.2279. PMID:
21217695. PMCID:
PMC3076025.
Article
10. Legrand-Poels S, Esser N, L'homme L, Scheen A, Paquot N, Piette J. 2014; Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol. 92:131–141. DOI:
10.1016/j.bcp.2014.08.013. PMID:
25175736.
Article
11. Gerber PA, Rutter GA. 2017; The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 26:501–518. DOI:
10.1089/ars.2016.6755. PMID:
27225690. PMCID:
PMC5372767.
Article
12. Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR, Kensler TW. 2009; Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis. 30:1024–1031. DOI:
10.1093/carcin/bgp100. PMID:
19386581. PMCID:
PMC2691141.
Article
13. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. 2016; Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. DOI:
10.1002/hep.28251. PMID:
26403645. PMCID:
PMC4688087.
Article
15. Li S, Vaziri ND, Masuda Y, Hajighasemi-Ossareh M, Robles L, Le A, Vo K, Chan JY, Foster CE, Stamos MJ, Ichii H. 2015; Pharmacological activation of Nrf2 pathway improves pancreatic islet isolation and transplantation. Cell Transplant. 24:2273–2283. DOI:
10.3727/096368915X686210. PMID:
25581574.
Article
16. Yagishita Y, Fukutomi T, Sugawara A, Kawamura H, Takahashi T, Pi J, Uruno A, Yamamoto M. 2014; Nrf2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes. 63:605–618. DOI:
10.2337/db13-0909. PMID:
24186865.
Article
17. Yi Y, Shen Y, Wu Q, Rao J, Guan S, Rao S, Huang L, Tan M, He L, Liu L, Li G, Liang S, Xiong W, Gao Y. 2018; Protective effects of oxymatrine on vascular endothelial cells from high-glucose-induced cytotoxicity by inhibiting the expression of A
2B receptor. Cell Physiol Biochem. 45:558–571. DOI:
10.1159/000487033. PMID:
29402837.
Article
18. Wang L, Li X, Zhang Y, Huang Y, Zhang Y, Ma Q. 2018; Oxymatrine ameliorates diabetes-induced aortic endothelial dysfunction via the regulation of eNOS and NOX4. J Cell Biochem. 120:7323–7332. DOI:
10.1002/jcb.28006. PMID:
30456880.
Article
19. Guo C, Han F, Zhang C, Xiao W, Yang Z. 2014; Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med. 80:269–276. DOI:
10.1055/s-0033-1360369. PMID:
24535719.
Article
21. Li DX, Wang CN, Wang Y, Ye CL, Jiang L, Zhu XY, Liu YJ. 2020; NLRP3 inflammasome-dependent pyroptosis and apoptosis in hippocampus neurons mediates depressive-like behavior in diabetic mice. Behav Brain Res. 391:112684. DOI:
10.1016/j.bbr.2020.112684. PMID:
32454054.
Article
22. Gu J, Huang W, Zhang W, Zhao T, Gao C, Gan W, Rao M, Chen Q, Guo M, Xu Y, Xu YH. 2019; Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int Immunopharmacol. 75:105832. DOI:
10.1016/j.intimp.2019.105832. PMID:
31473434.
Article
23. Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, Barazzoni R, Scherer PE, Cinti S. 2013; Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res. 54:2423–2436. DOI:
10.1194/jlr.M038638. PMID:
23836106. PMCID:
PMC3735940.
Article
24. Yang L, Liu J, Shan Q, Geng G, Shao P. 2020; High glucose inhibits proliferation and differentiation of osteoblast in alveolar bone by inducing pyroptosis. Biochem Biophys Res Commun. 522:471–478. Erratum in:
Biochem Biophys Res Commun. 2020;528:404. DOI:
10.1016/j.bbrc.2020.05.039. PMID:
32471714.
Article
25. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F. 2014; NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 9:e104771. DOI:
10.1371/journal.pone.0104771. PMID:
25136835. PMCID:
PMC4138036.
Article
26. Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, Youker KA, Kishore R, Krishnamurthy P. 2016; MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun. 471:423–429. DOI:
10.1016/j.bbrc.2016.02.065. PMID:
26898797. PMCID:
PMC4818978.
Article
27. Song Y, Yang L, Guo R, Lu N, Shi Y, Wang X. 2019; Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem Biophys Res Commun. 509:359–366. DOI:
10.1016/j.bbrc.2018.12.139. PMID:
30591217.
Article
28. Wu M, Yang Z, Zhang C, Shi Y, Han W, Song S, Mu L, Du C, Shi Y. 2021; Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism. 118:154748. DOI:
10.1016/j.metabol.2021.154748. PMID:
33675822.
Article
29. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. 2013; Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 62:194–204. DOI:
10.2337/db12-0420. PMID:
23086037. PMCID:
PMC3526026.
Article
30. Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. 2012; Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One. 7:e38285. DOI:
10.1371/journal.pone.0038285. PMID:
22701621. PMCID:
PMC3372527.
Article
31. Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z. 2018; Vitamin D
3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res. 2018:8193523. DOI:
10.1155/2018/8193523. PMID:
29682582. PMCID:
PMC5842685.
Article
32. Yang WH, Park SY, Nam HW, Kim DH, Kang JG, Kang ES, Kim YS, Lee HC, Kim KS, Cho JW. 2008; NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci U S A. 105:17345–17350. DOI:
10.1073/pnas.0806198105. PMID:
18988733. PMCID:
PMC2582288.
Article
34. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA. 2009; Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 29:359–370. DOI:
10.1523/JNEUROSCI.2760-08.2009. PMID:
19144836. PMCID:
PMC6664935.
Article
39. Liang J, Chang B, Huang M, Huang W, Ma W, Liu Y, Tai W, Long Y, Lu Y. 2018; Oxymatrine prevents synovial inflammation and migration via blocking NF-κB activation in rheumatoid fibroblast-like synoviocytes. Int Immunopharmacol. 55:105–111. DOI:
10.1016/j.intimp.2017.12.006. PMID:
29241159.
Article
40. Liang L, Wu J, Luo J, Wang L, Chen ZX, Han CL, Gan TQ, Huang JA, Cai ZW. 2020; Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling
in vitro. Oncol Lett. 19:519–526. DOI:
10.3892/ol.2019.11090. PMID:
31897166. PMCID:
PMC6924048.
41. Jiang G, Liu X, Wang M, Chen H, Chen Z, Qiu T. 2015; Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cir Bras. 30:422–429. DOI:
10.1590/S0102-865020150060000008. PMID:
26108031.
Article
42. Li L, Liu Q, Fan L, Xiao W, Zhao L, Wang Y, Ye W, Lan F, Jia B, Feng H, Zhou C, Yue X, Xing G, Wang T. 2017; Protective effects of oxymatrine against arsenic trioxide-induced liver injury. Oncotarget. 8:12792–12799. DOI:
10.18632/oncotarget.12478. PMID:
27713174. PMCID:
PMC5355055.
Article
43. Li M, Zhang X, Cui L, Yang R, Wang L, Liu L, Du W. 2011; The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: role of nrf2 and hemeoxygenase-1 expression. Biol Pharm Bull. 34:595–601. DOI:
10.1248/bpb.34.595. PMID:
21532144.
Article
44. Xu J, Li C, Li Z, Yang C, Lei L, Ren W, Su Y, Chen C. 2018; Protective effects of oxymatrine against lipopolysaccharide/D-galactosamine-induced acute liver failure through oxidative damage, via activation of Nrf2/HO-1 and modulation of inflammatory TLR4-signaling pathways. Mol Med Rep. 17:1907–1912. DOI:
10.3892/mmr.2017.8060.
Article