Cancer Res Treat.  2022 Apr;54(2):417-423. 10.4143/crt.2021.575.

Radiation-Induced Ocular Surface Disorders and Retinopathy: Ocular Structures and Radiation Dose-Volume Effect

Affiliations
  • 1Department of Radiation Oncology, Ege University Faculty of Medicine, Izmir, Turkey
  • 2Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkey

Abstract

Purpose
This study aimed to evaluate the radiation-induced adverse effects on ocular structures in head and neck cancer patients and investigate the radiation dose-volume effects on the cornea, lacrimal gland, retina, optic nerve and chiasm.
Materials and Methods
A total of 38 eyes of 19 patients were included in this prospective, cohort study. All patients underwent complete ophthalmological examination in addition to contrast sensitivity, visual field and visual evoked potentials (VEP) tests. Ophthalmological examinations and psychophysical tests were performed in 6th, 12th, 18th, 24th months and in the last visit. The relationship between the ophthalmologic findings, and the radiation doses below and above the cut-off values was evaluated.
Results
Contrast sensitivity decrease and visual field deterioration were observed in 42% of the patients in the last visit (median 26 months) whereas a prolonged latency and decreased amplitude of P100 wave in VEP was observed in 58% and 33% of the eyes, respectively at 24th month. Totally 16 patients (84.2%) developed dry eye disease and eight of them received radiotherapy below tolerance doses and had mild to moderate dry eye findings. Radiation-induced retinopathy was observed in three of the eyes in eight patients who received radiation above tolerance dose.
Conclusion
Head and neck cancers treated with radiotherapy, resulted in various ophthalmic complications. All patients who are treating with radiotherapy should be evaluated by an ophthalmologist in terms of anterior and posterior segment damage, even if the radiation dose is below the tolerance limit.

Keyword

Radiotherapy; Radiation-induced toxicity; Head and neck neoplasms; Ocular tolerance doses; Ocular surface; Radiation retinopathy

Figure

  • Fig. 1 Results of visual acuity compared between retina D10 < 60 Gy and ≥ 60 Gy. CI, confidence interval; D10, highest dose to 10% of the volume; OR, odds ratio.


Reference

References

1. Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy: clinical, histopathological, ultrastructural and experimental correlations. Eye (Lond). 1991; 5(Pt 2):239–51.
2. Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation retinopathy after external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994; 30:765–73.
Article
3. Jeganathan VS, Wirth A, MacManus MP. Ocular risks from orbital and periorbital radiation therapy: a critical review. Int J Radiat Oncol Biol Phys. 2011; 79:650–9.
Article
4. Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Gregoire V, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015; 117:83–90.
Article
5. Sanli O, Dogru M, Erturk H. Limbal stem cells and their clinical significance. Turkiye Klinikleri J Ophtalmol. 2002; 11:227–32.
6. Moss WT, Brand WN, Battifora H. Radiation oncology. 5th ed. St. Louis, MO: C.V. Mosby;1979. p. 147–55.
7. Dua HS, Joseph A, Shanmuganathan VA, Jones RE. Stem cell differentiation and the effects of deficiency. Eye (Lond). 2003; 17:877–85.
Article
8. Bomford CK. Brachytherapy. Bomford CK, Kunkler IH, editors. Walter and Miller’s textbook of radiotherapy. 6th ed. Edinburgh: Churchill Livingstone;2003. p. 225–44.
9. Karp LA, Streeten BW, Cogan DG. Radiation-induced atrophy of the Meibomian gland. Arch Ophthalmol. 1979; 97:303–5.
10. Kennerdell JS, Flores NE, Hartsock RJ. Low-dose radiotherapy for lymphoid lesions of the orbit and ocular adnexa. Ophthalmic Plast Reconstr Surg. 1999; 15:129–33.
Article
11. Parsons JT, Bova FJ, Mendenhall WM, Million RR, Fitzgerald CR. Response of the normal eye to high dose radiotherapy. Oncology (Williston Park). 1996; 10:837–47.
12. Stafford SL, Kozelsky TF, Garrity JA, Kurtin PJ, Leavitt JA, Martenson JA, et al. Orbital lymphoma: radiotherapy outcome and complications. Radiother Oncol. 2001; 59:139–44.
Article
13. Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Severe dry-eye syndrome following external beam irradiation. Int J Radiat Oncol Biol Phys. 1994; 30:775–80.
Article
14. Suarez Baraza J, Garcia Gonzalez J, Calzado Hinojosa J, Miralles de Imperial J. Proliferative radiation retinopathy. Arch Soc Esp Oftalmol. 2003; 78:215–8.
15. Monroe AT, Bhandare N, Morris CG, Mendenhall WM. Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys. 2005; 61:856–64.
Article
16. Zamber RW, Kinyoun JL. Radiation retinopathy. West J Med. 1992; 157:530–3.
17. Anteby I, Ramu N, Gradstein L, Miskin H, Pe’er J, Benezra D. Ocular and orbital complications following the treatment of retinoblastoma. Eur J Ophthalmol. 1998; 8:106–11.
Article
18. Gupta A, Dhawahir-Scala F, Smith A, Young L, Charles S. Radiation retinopathy: case report and review. BMC Ophthalmol. 2007; 7:6.
Article
19. Durkin SR, Roos D, Higgs B, Casson RJ, Selva D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2007; 85:240–50.
Article
20. Lee AW, Ng WT, Pan JJ, Chiang CL, Poh SS, Choi HC, et al. International guideline on dose prioritization and acceptance criteria in radiation therapy planning for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2019; 105:567–80.
Article
21. Ozkaya Akagunduz O, Guven Yilmaz S, Yalman D, Yuce B, Demirkilinc Biler E, Afrashi F, et al. Evaluation of the radiation dose-volume effects of optic nerves and chiasm by psychophysical, electrophysiologic tests, and optical coherence tomography in nasopharyngeal carcinoma. Technol Cancer Res Treat. 2017; 16:969–77.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr