2. Tanwar S, Rhodes F, ivastava A Sr, Trembling PM, Rosenberg WM. 2020; Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol. 26:109–33. DOI:
10.3748/wjg.v26.i2.109. PMID:
31969775. PMCID:
PMC6962431.
Article
4. Kazankov K, Barrera F, Møller HJ, Rosso C, Bugianesi E, David E, Younes R, Esmaili S, Eslam M, McLeod D, Bibby BM, Vilstrup H, George J, Grønbaek H. 2016; The macrophage activation marker sCD163 is associated with morphological disease stages in patients with non-alcoholic fatty liver disease. Liver Int. 36:1549–57. DOI:
10.1111/liv.13150. PMID:
27102725.
Article
5. Martinez FO, Gordon S. 2014; The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13.
Article
7. Baeck C, Wei X, Bartneck M, Fech V, Heymann F, Gassler N, Hittatiya K, Eulberg D, Luedde T, Trautwein C, Tacke F. 2014; Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology. 59:1060–72. DOI:
10.3410/f.718259135.793492238. PMID:
24481979.
Article
11. Weber LW, Boll M, Stampfl A. 2003; Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 33:105–36. DOI:
10.1080/713611034. PMID:
12708612.
Article
13. Chu PS, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, et al. 2013; C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 58:337–50. DOI:
10.1002/hep.26351. PMID:
23460364.
Article
14. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA, Tabas I. 2005; Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem. 280:21763–72. DOI:
10.1074/jbc.M501759200. PMID:
15826936.
15. Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, Dragomir AC, Aloman C, Schwabe RF. 2013; Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–73. DOI:
10.1002/hep.26429.
Article
16. Ramachandran P, Iredale JP, Fallowfield JA. 2015; Resolution of liver fibrosis: basic mechanisms and clinical relevance. Semin Liver Dis. 35:119–31. DOI:
10.1055/s-0035-1550057. PMID:
25974898.
Article
17. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon VK, Cappon A, Gordon-Walker TT, Williams MJ, Dunbar DR, Manning JR, van Rooijen N, Fallowfield JA, Forbes SJ, Iredale JP. 2012; Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 109:E3186–95. DOI:
10.1073/pnas.1119964109. PMID:
23100531. PMCID:
PMC3503234.
Article
18. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, Iredale JP. 2007; Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 178:5288–95. DOI:
10.4049/jimmunol.178.8.5288. PMID:
17404313.
Article
19. Beattie L, Sawtell A, Mann J, Frame TCM, Teal B, de Labastida Rivera F, Brown N, Walwyn-Brown K, Moore JWJ, MacDonald S, Lim EK, Dalton JE, Engwerda CR, MacDonald KP, Kaye PM. 2016; Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol. 65:758–68. DOI:
10.1016/j.jhep.2016.05.037. PMID:
27262757. PMCID:
PMC5028381.
Article
20. Sakai M, Troutman TD, Seidman JS, Ouyang Z, Spann NJ, Abe Y, Ego KM, Bruni CM, Deng Z, Schlachetzki JCM, Nott A, Bennett H, Chang J, Vu BT, Pasillas MP, Link VM, Texari L, Heinz S, Thompson BM, McDonald JG, Geissmann F, Glass CK. 2019; Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity. 51:655–70.e8. DOI:
10.1016/j.immuni.2019.09.002. PMID:
31587991. PMCID:
PMC6800814.
Article
21. Wang J, Kubes P. 2016; A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell. 163:668–78. DOI:
10.1016/j.cell.2016.03.009. PMID:
27062926.
Article
22. Li L, Wei W, Li Z, Chen H, Li Y, Jiang W, Chen W, Kong G, Yang J, Li Z. 2018; The spleen promotes the secretion of CCL2 and supports an M1 dominant phenotype in hepatic macrophages during liver fibrosis. Cell Physiol Biochem. 51:557–74. DOI:
10.33594/000000112. PMID:
30458454. PMID:
d17af1d8643b47d29f20a293f2992e02.
Article
23. Orekhov AN, Orekhova VA, Nikiforov NG, Myasoedova VA, Grechko AV, Romanenko EB, Zhang D, Chistiakov DA. 2019; Monocyte differentiation and macrophage polarization. Vessel Plus. 3:10. DOI:
10.20517/2574-1209.2019.04.
Article
24. Graubardt N, Vugman M, Mouhadeb O, Caliari G, Pasmanik-Chor M, Reuveni D, Zigmond E, Brazowski E, David E, Chappell-Maor L, Jung S, Varol C. 2017; Ly6Chi monocytes and their macrophage descendants regulate neutrophil function and clearance in acetaminophen-induced liver injury. Front Immunol. 8:626. DOI:
10.3389/fimmu.2017.00626. PMID:
28620383. PMCID:
PMC5451509.
Article
25. Song P, Zhang J, Zhang Y, Shu Z, Xu P, He L, Yang C, Zhang J, Wang H, Li Y, Li Q. 2018; Hepatic recruitment of CD11b+Ly6C+ inflammatory monocytes promotes hepatic ischemia/reperfusion injury. Int J Mol Med. 41:935–45. DOI:
10.3892/ijmm.2017.3315. PMID:
29251315. PMCID:
PMC5752159.
Article
26. Zheng Z, Wang H, Li L, Zhang S, Zhang C, Zhang H, Ji F, Liu X, Zhu K, Kong G, Li Z. 2020; Splenectomy enhances the Ly6Clow phenotype in hepatic macrophages by activating the ERK1/2 pathway during liver fibrosis. Int Immunopharmacol. 86:106762. DOI:
10.1016/j.intimp.2020.106762. PMID:
32652503.
Article
27. Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC. 2011; Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 118:e16–31. DOI:
10.1182/blood-2010-12-326355. PMID:
21653326.
Article
28. Jakubzick CV, Randolph GJ, Henson PM. 2017; Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 17:349–62. DOI:
10.1038/nri.2017.28. PMID:
28436425.
Article
30. Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. 2019; Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 10:2035. DOI:
10.3389/fimmu.2019.02035. PMID:
31543877. PMCID:
PMC6728754.
Article
31. Tak T, van Groenendael R, Pickkers P, Koenderman L. 2017; Monocyte subsets are differentially lost from the circulation during acute inflammation induced by human experimental endotoxemia. J Innate Immun. 9:464–74. DOI:
10.1159/000475665. PMID:
28641299. PMCID:
PMC6738874.
Article
32. Askenase MH, Han SJ, Byrd AL, Morais da Fonseca D, Bouladoux N, Wilhelm C, Konkel JE, Hand TW, Lacerda-Queiroz N, Su XZ, Trinchieri G, Grainger JR, Belkaid Y. 2015; Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity. 42:1130–42. DOI:
10.1016/j.immuni.2015.05.011. PMID:
26070484. PMCID:
PMC4472558.
Article