1. Kricun ME. 1985; Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol. 14:10–19. DOI:
10.1007/BF00361188. PMID:
3895447.
Article
2. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. 2001; Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2:165–171. DOI:
10.1023/A:1011513223894. PMID:
11708718.
3. Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. 2013; Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 98:2294–2300. DOI:
10.1210/jc.2012-3949. PMID:
23553860. PMCID:
PMC3667265.
Article
4. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. 2013; Marrow fat and bone: new perspectives. J Clin Endocrinol Metab. 98:935–945. DOI:
10.1210/jc.2012-3634. PMID:
23393168. PMCID:
PMC3590487.
5. Piotrowska K, Tarnowski M. 2021; Bone marrow adipocytes: role in physiology and various nutritional conditions in human and animal models. Nutrients. 13:1412. DOI:
10.3390/nu13051412. PMID:
33922353. PMCID:
PMC8146898.
Article
6. Tratwal J, Rojas-Sutterlin S, Bataclan C, Blum S, Naveiras O. 2021; Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract Res Clin Endocrinol Metab. 35:101564. DOI:
10.1016/j.beem.2021.101564. PMID:
34417114.
Article
8. Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. 2005; Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 22:279–285. DOI:
10.1002/jmri.20367. PMID:
16028245.
Article
9. Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, et al. 2014; Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20:368–375. DOI:
10.1016/j.cmet.2014.06.003. PMID:
24998914. PMCID:
PMC4126847.
Article
10. Botolin S, McCabe LR. 2007; Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 148:198–205. DOI:
10.1210/en.2006-1006. PMID:
17053023.
Article
11. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. 2017; Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 20:771–784. DOI:
10.1016/j.stem.2017.02.009. PMID:
28330582. PMCID:
PMC5459794.
Article
12. Kim YH, Cho KA, Lee HJ, Park M, Shin SJ, Park JW, et al. 2020; Conditioned medium from human tonsil-derived mesenchymal stem cells enhances bone marrow engraftment via endothelial cell restoration by pleiotrophin. Cells. 9:221. DOI:
10.3390/cells9010221. PMID:
31952360. PMCID:
PMC7017309.
Article
13. Hui SK, Sharkey L, Kidder LS, Zhang Y, Fairchild G, Coghill K, et al. 2012; The influence of therapeutic radiation on the patterns of bone marrow in ovary-intact and ovariectomized mice. PLoS One. 7:e42668. DOI:
10.1371/journal.pone.0042668. PMID:
22880075. PMCID:
PMC3412808.
Article
14. Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CM, et al. 2016; Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology. 157:508–521. DOI:
10.1210/en.2015-1477. PMID:
26696121. PMCID:
PMC4733126.
Article
16. Griffith JF, Yeung DK, Ahuja AT, Choy CW, Mei WY, Lam SS, et al. 2009; A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone. 44:1092–1096. DOI:
10.1016/j.bone.2009.02.022. PMID:
19268721.
Article
17. Suchacki KJ, Tavares AA, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, et al. 2020; Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 11:3097. DOI:
10.1038/s41467-020-16878-2. PMID:
32555194. PMCID:
PMC7303125.
Article
18. Schellinger D, Lin CS, Hatipoglu HG, Fertikh D. 2001; Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol. 22:1620–1627. PMID:
11559519. PMCID:
PMC7974571.
21. Li Y, Jin D, Xie W, Wen L, Chen W, Xu J, et al. 2018; PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr Stem Cell Res Ther. 13:185–192. DOI:
10.2174/1574888X12666171012141908. PMID:
29034841.
Article
22. Li J, Zhang N, Huang X, Xu J, Fernandes JC, Dai K, et al. 2013; Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis. 4:e832. DOI:
10.1038/cddis.2013.348. PMID:
24091675. PMCID:
PMC3824658.
Article
23. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, et al. 2004; Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 199:805–814. DOI:
10.1084/jem.20031454. PMID:
15024046. PMCID:
PMC2212719.
Article
24. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, et al. 2010; Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 25:948–959. DOI:
10.1002/jbmr.14. PMID:
20200929.
Article
25. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, et al. 2014; Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 370:412–420. DOI:
10.1056/NEJMoa1305224. PMID:
24382002.
Article
26. Kim YH, Park M, Cho KA, Kim BK, Ryu JH, Woo SY, et al. 2016; Tonsil-derived mesenchymal stem cells promote bone mineralization and reduce marrow and visceral adiposity in a mouse model of senile osteoporosis. Stem Cells Dev. 25:1161–1171. DOI:
10.1089/scd.2016.0063. PMID:
27245267.
Article
27. Botolin S, McCabe LR. 2006; Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 209:967–976. DOI:
10.1002/jcp.20804. PMID:
16972249.
Article
28. Liu LF, Shen WJ, Ueno M, Patel S, Kraemer FB. 2011; Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics. 12:212. DOI:
10.1186/1471-2164-12-212. PMID:
21545734. PMCID:
PMC3113784.
Article
29. Monami M, Dicembrini I, Antenore A, Mannucci E. 2011; Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 34:2474–2476. DOI:
10.2337/dc11-1099. PMID:
22025784. PMCID:
PMC3198283.
30. Polineni S, Resulaj M, Faje AT, Meenaghan E, Bredella MA, Bouxsein M, et al. 2020; Red and white blood cell counts are associated with bone marrow adipose tissue, bone mineral density, and bone microarchitecture in premenopausal women. J Bone Miner Res. 35:1031–1039. DOI:
10.1002/jbmr.3986. PMID:
32078187. PMCID:
PMC7881438.
Article
31. Li Z, Hardij J, Evers SS, Hutch CR, Choi SM, Shao Y, et al. 2019; G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. J Clin Invest. 129:2404–2416. DOI:
10.1172/JCI126173. PMID:
31063988. PMCID:
PMC6546463.
Article
32. Yamazaki K, Allen TD. 1991; Ultrastructural and morphometric alterations in bone marrow stromal tissue after 7 Gy irradiation. Blood Cells. 17:527–549. PMID:
1760560.
33. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. 2009; Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 460:259–263. DOI:
10.1038/nature08099. PMID:
19516257. PMCID:
PMC2831539.
Article
34. Ferland-McCollough D, Maselli D, Spinetti G, Sambataro M, Sullivan N, Blom A, et al. 2018; MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes. 67:1380–1394. DOI:
10.2337/db18-0044. PMID:
29703845.
Article
36. Baccin C, Al-Sabah J, Velten L, Helbling PM, Grunschlager F, Hernandez-Malmierca P, et al. 2020; Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 22:38–48. DOI:
10.1038/s41556-019-0439-6. PMID:
31871321. PMCID:
PMC7610809.
Article
37. Boyd AL, Reid JC, Salci KR, Aslostovar L, Benoit YD, Shapovalova Z, et al. 2017; Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat Cell Biol. 19:1336–1347. DOI:
10.1038/ncb3625. PMID:
29035359.
Article
38. Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR, et al. 2017; Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 129:1320–1332. DOI:
10.1182/blood-2016-08-734798. PMID:
28049638.
Article
39. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, et al. 2013; Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 4:2108–2123. DOI:
10.18632/oncotarget.1482. PMID:
24240026. PMCID:
PMC3875773.
Article
40. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. 2011; Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 19:49–53. DOI:
10.1038/oby.2010.106. PMID:
20467419. PMCID:
PMC3593350.
Article
41. L Newton A, J Hanks L, Davis M, Casazza K. 2013; The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls. Bonekey Rep. 2:315. DOI:
10.1038/bonekey.2013.49. PMID:
23951544. PMCID:
PMC3722749.
Article
42. de Araujo IM, Salmon CE, Nahas AK, Nogueira-Barbosa MH, Elias J Jr, de Paula FJ. 2017; Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur J Endocrinol. 176:21–30. DOI:
10.1530/EJE-16-0448. PMID:
27707768.
Article
43. de Paula FJ, de Araujo IM, Carvalho AL, Elias J Jr, Salmon CE, Nogueira-Barbosa MH. 2015; The relationship of fat distribution and insulin resistance with lumbar spine bone mass in women. PLoS One. 10:e0129764. DOI:
10.1371/journal.pone.0129764. PMID:
26067489. PMCID:
PMC4466243.
Article
44. Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, et al. 2013; Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 269:534–541. DOI:
10.1148/radiol.13130375. PMID:
23861502. PMCID:
PMC3807082.
Article
45. Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M. 2018; High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res. 33:1154–1165. DOI:
10.1002/jbmr.3408. PMID:
29444341.
Article
46. Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JL, et al. 2019; Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 27:2050–2062. DOI:
10.1016/j.celrep.2019.04.066. PMID:
31091445.
Article
48. Abella E, Feliu E, Granada I, Milla F, Oriol A, Ribera JM, et al. 2002; Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. Am J Clin Pathol. 118:582–588. DOI:
10.1309/2Y7X-YDXK-006B-XLT2. PMID:
12375646.
Article
49. Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A, Meenaghan E, et al. 2012; Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res. 27:1864–1871. DOI:
10.1002/jbmr.1640. PMID:
22508185. PMCID:
PMC3415584.
Article
50. Ecklund K, Vajapeyam S, Mulkern RV, Feldman HA, O'Donnell JM, DiVasta AD, et al. 2017; Bone marrow fat content in 70 adolescent girls with anorexia nervosa: magnetic resonance imaging and magnetic resonance spectroscopy assessment. Pediatr Radiol. 47:952–962. DOI:
10.1007/s00247-017-3856-3. PMID:
28432403. PMCID:
PMC5650065.
Article