Korean J Pain.  2022 Jan;35(1):22-32. 10.3344/kjp.2022.35.1.22.

The role of basolateral amygdala orexin 1 receptors on the modulation of pain and psychosocial deficits in nitroglycerin-induced migraine model in adult male rats

Affiliations
  • 1Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
  • 2Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
  • 3Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
  • 4Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
  • 5Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background
Migraine headaches have been associated with sensory hyperactivity and anomalies in social/emotional responses. The main objective of this study was to evaluate the potential involvement of orexin 1 receptors (Orx1R) within the basolateral amygdala (BLA) in the modulation of pain and psychosocial dysfunction in a nitroglycerin (NTG)-induced rat model of migraine.
Methods
Adult male Wistar rats were injected with NTG (5 mg/kg, intraperitoneal) every second day over nine days to induce migraine. The experiments were done in the following six groups (6 rats per group): untreated control, NTG, NTG plus vehicle, and NTG groups that were post-treated with intra-BLA microinjection of Orx1R antagonist SB-334867 (10, 20, and 40 nM). Thermal hyperalgesia was assessed using the hot plate and tail-flick tests. Moreover, the elevated plus maze (EPM) and open field (OF) tests were used to assess anxiety-like behaviors. The animals’ sociability was evaluated using the three-chamber social task. The NTG-induced photophobia was assessed using a light-dark box.
Results
We observed no change in NTG-induced thermal hyperalgesia following administration of SB-334867 (10, 20, and 40 nM). However, SB-334867 (20 and 40 nM) aggravated the NTG-induced anxiogenic responses in both the EPM and OF tasks. The NTG-induced social impairment was overpowered by SB-334867 at all doses. Time spent in the dark chamber of light-dark box was significantly increased in rats treated with SB-334867 (20 and 40 nM/rat).
Conclusions
The findings suggest a role for Orx1R within the BLA in control comorbid affective complaints with migraine in rats.

Keyword

Amygdala; Anxiety; Basolateral Nuclear Complex; Hyperalgesia; Migraine Disorders; Nitroglycerin; Orexins; Orexin Receptors; Orexin Receptor Antagonists; Rats

Figure

  • Fig. 1 Stereotaxic surgical procedure for guide cannula implantation in the basolateral amygdala (BLA) (A-C), a typical section of BLA taken from the Paxinos and Watson rat brain atlas and a representative photographs exhibiting appropriate cannula implantation into the BLA region (D).

  • Fig. 2 The flow chart of study recruitment. BLA: basolateral amygdala, NTG: nitroglycerin, DMSO: dimethylsulfoxide, EPM: elevated plus maze, OF: open field.

  • Fig. 3 The hot plate (A) and tail flick (B) latencies among the different experimental groups (n = 6 per group). Graphs represent the mean ± standard error of the mean. NTG: nitroglycerin, SB: SB-334867. **P < 0.01 vs. control group, ***P < 0.001.

  • Fig. 4 The time spent (A) and the number of entries (B) into the open arms of the elevated plus-maze during a 5 minutes test in nitroglycerin (NTG)-treated rats and NTG groups received intra-basolateral amygdala infusion of SB-334867 (10, 20, and 40 nM/rat) (n = 6 per group). Graphs represent the mean ± standard error of the mean. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group, #P < 0.05 vs. NTG.

  • Fig. 5 The time spent (A) and the number of entries (B) in the central zone of the open filed during a 5 minutes test in nitroglycerin (NTG)-treated rats and NTG groups that received intra-basolateral amygdala infusion of SB-334867 (10, 20, and 40 nM/rat). n = 6 per experimental group. Graphs represent the mean ± standard error of the mean. *P < 0.05, **P < 0.01 vs. control group, #P < 0.05 vs. NTG.

  • Fig. 6 Assessment of light aversion behavior in the light dark box test. The data in each graph are represented as mean ± standard error of the mean values (n = 6). NTG: nitroglycerin, DMSO: dimethylsulfoxide, SB: SB-334867. ***P < 0.001 vs. control group, ###P < 0.001 vs. NTG group.

  • Fig. 7 Sociability in the three-chambered task. The time spent in the chamber containing stranger 1 (A) and stranger 2 (B), and the time spent in close proximity with the cage containing stranger 1 (C). Social discrimination (D). n = 6 per experimental group. Bar graphs represent mean ± standard error of the mean. NTG: nitroglycerin, SB: SB-334867. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. control, #P < 0.05 NTG and NTG plus vehicle.


Reference

1. Dodick DW. 2018; A phase-by-phase review of migraine pathophysiology. Headache. 58 Suppl 1:4–16. DOI: 10.1111/head.13300. PMID: 29697154.
Article
2. Balaban CD, Jacob RG, Furman JM. 2011; Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications. Expert Rev Neurother. 11:379–94. DOI: 10.1586/ern.11.19. PMID: 21375443. PMCID: PMC3107725.
Article
3. Maizels M, Aurora S, Heinricher M. 2012; Beyond neurovascular: migraine as a dysfunctional neurolimbic pain network. Headache. 52:1553–65. DOI: 10.1111/j.1526-4610.2012.02209.x. PMID: 22757613.
Article
4. Hadjikhani N, Ward N, Boshyan J, Napadow V, Maeda Y, Truini A, et al. 2013; The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia. 33:1264–8. DOI: 10.1177/0333102413490344. PMID: 23720503. PMCID: PMC3797870.
Article
5. Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S. 2017; Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain. 18:7. DOI: 10.1186/s10194-017-0722-5. PMID: 28116559. PMCID: PMC5256627.
Article
6. Harrison DG, Bates JN. 1993; The nitrovasodilators. New ideas about old drugs. Circulation. 87:1461–7. DOI: 10.1161/01.CIR.87.5.1461. PMID: 8491000.
Article
7. de Tommaso M, Libro G, Guido M, Difruscolo O, Losito L, Sardaro M, et al. 2004; Nitroglycerin induces migraine headache and central sensitization phenomena in patients with migraine without aura: a study of laser evoked potentials. Neurosci Lett. 363:272–5. DOI: 10.1016/j.neulet.2004.04.029. PMID: 15182958.
Article
8. Kilduff TS, Peyron C. 2000; The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23:359–65. DOI: 10.1016/S0166-2236(00)01594-0. PMID: 10906799.
Article
9. Flores Á, Herry C, Maldonado R, Berrendero F. 2017; Facilitation of contextual fear extinction by orexin-1 receptor antagonism is associated with the activation of specific amygdala cell subpopulations. Int J Neuropsychopharmacol. 20:654–9. DOI: 10.1093/ijnp/pyx029. PMID: 28453642. PMCID: PMC5570099.
Article
10. Kim TK, Han PL. 2016; Functional connectivity of basolateral amygdala neurons carrying orexin receptors and melanin-concentrating hormone receptors in regulating sociability and mood-related behaviors. Exp Neurobiol. 25:307–17. DOI: 10.5607/en.2016.25.6.307. PMID: 28035181. PMCID: PMC5195816.
Article
11. Holland PR, Akerman S, Goadsby PJ. 2006; Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci. 24:2825–33. DOI: 10.1111/j.1460-9568.2006.05168.x. PMID: 17156207.
Article
12. Paxinos G, Watson C. 2007. Paxinos & Watson the rat brain in stereotaxic coordinates. 6th ed. Elsevier;Amsterdam: https://www.worldcat.org/title/paxinos-watson-the-rat-brain-in-stereotaxic-coordinates/oclc/1073190973?referer=br&ht=edition.
13. Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M, Sheibani V. 2020; Activation orexin 1 receptors in the ventrolateral periaqueductal gray matter attenuate nitroglycerin-induced migraine attacks and calcitonin gene related peptide up-regulation in trigeminal nucleus caudalis of rats. Neuropharmacology. 178:107981. DOI: 10.1016/j.neuropharm.2020.107981. PMID: 32745488.
Article
14. Raoof M, Shakoori A, Kooshki R, Abbasnejad M, Amanpour S. 2017; The effects of regular exercise on capsaicin-induced pulpal pain and pain-induced changes in passive avoidance learning and memory in rats. Korean J Pain. 30:258–64. DOI: 10.3344/kjp.2017.30.4.258. PMID: 29123620. PMCID: PMC5665737.
Article
15. Yao G, Huang Q, Wang M, Yang CL, Liu CF, Yu TM. 2017; Behavioral study of a rat model of migraine induced by CGRP. Neurosci Lett. 651:134–9. DOI: 10.1016/j.neulet.2017.04.059. PMID: 28479104.
Article
16. Huang D, Ren L, Qiu CS, Liu P, Peterson J, Yanagawa Y, et al. 2016; Characterization of a mouse model of headache. Pain. 157:1744–60. DOI: 10.1097/j.pain.0000000000000578. PMID: 27058678. PMCID: PMC4960827.
Article
17. Farkas S, Bölcskei K, Markovics A, Varga A, Kis-Varga Á, Kormos V, et al. 2016; Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods. 77:33–44. DOI: 10.1016/j.vascn.2015.09.006. PMID: 26456070.
Article
18. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, et al. 2010; Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. 30:170–8. DOI: 10.1111/j.1468-2982.2009.01864.x. PMID: 19489890. PMCID: PMC4854191.
Article
19. Greco R, Demartini C, Zanaboni AM, Tassorelli C. 2018; Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain. 19:51. DOI: 10.1186/s10194-018-0879-6. PMID: 30003352. PMCID: PMC6043463.
Article
20. Li Y, Zhang Q, Qi D, Zhang L, Yi L, Li Q, et al. 2016; Valproate ameliorates nitroglycerin-induced migraine in trigeminal nucleus caudalis in rats through inhibition of NF-κB. J Headache Pain. 17:49. DOI: 10.1186/s10194-016-0631-z. PMID: 27150105. PMCID: PMC4859223.
Article
21. Schwedt TJ. 2013; Multisensory integration in migraine. Curr Opin Neurol. 26:248–53. DOI: 10.1097/WCO.0b013e328360edb1. PMID: 23591684. PMCID: PMC4038337.
Article
22. Ashkenazi A, Silberstein S, Jakubowski M, Burstein R. 2007; Improved identification of allodynic migraine patients using a questionnaire. Cephalalgia. 27:325–9. DOI: 10.1111/j.1468-2982.2007.01291.x. PMID: 17376108. PMCID: PMC2664545.
Article
23. Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, et al. 2008; Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology. 70:1525–33. DOI: 10.1212/01.wnl.0000310645.31020.b1. PMID: 18427069. PMCID: PMC2664547.
Article
24. Schwedt TJ, Krauss MJ, Frey K, Gereau RW 4th. 2011; Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia. 31:6–12. DOI: 10.1177/0333102410365108. PMID: 20974609. PMCID: PMC3541827.
Article
25. Gottschalk MG, Richter J, Ziegler C, Schiele MA, Mann J, Geiger MJ, et al. 2019; Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes. Transl Psychiatry. 9:75. DOI: 10.1038/s41398-019-0415-8. PMID: 30718541. PMCID: PMC6361931.
Article
26. Peres MFP, Vieira DS, Masruha MR, Gonçalves AL, Mercante JPP, Naffah-Mazzacoratti M da G. 2011; Orexin-A CSF levels correlate with anxiety but not excessive daytime sleepiness in chronic migraine. Headache Med. 2:41–5. https://headachemedicine.com.br/index.php/hm/article/view/77. DOI: 10.48208/HeadacheMed.2011.9.
Article
27. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, et al. 2010; A key role for orexin in panic anxiety. Nat Med. 16:111–5. DOI: 10.1038/nm.2075. PMID: 20037593. PMCID: PMC2832844.
Article
28. Flores Á, Valls-Comamala V, Costa G, Saravia R, Maldonado R, Berrendero F. 2014; The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology. 39:2732–41. DOI: 10.1038/npp.2014.146. PMID: 24930888. PMCID: PMC4200503.
Article
29. Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, et al. 2018; The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front Mol Neurosci. 11:220. DOI: 10.3389/fnmol.2018.00220. PMID: 30002617. PMCID: PMC6031739.
Article
30. Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE. 2000; Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci. 20:8177–87. DOI: 10.1523/JNEUROSCI.20-21-08177.2000. PMID: 11050141. PMCID: PMC6772720.
Article
31. Keil MF, Briassoulis G, Stratakis CA. 2016; The role of protein kinase A in anxiety behaviors. Neuroendocrinology. 103:625–39. DOI: 10.1159/000444880. PMID: 26939049.
Article
32. Yang L, Shi LJ, Yu J, Zhang YQ. 2016; Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice. Mol Brain. 9:3. DOI: 10.1186/s13041-015-0181-3. PMID: 26747511. PMCID: PMC4706664.
Article
33. Di Benedetto B, Kallnik M, Weisenhorn DM, Falls WA, Wurst W, Hölter SM. 2009; Activation of ERK/MAPK in the lateral amygdala of the mouse is required for acquisition of a fear-potentiated startle response. Neuropsychopharmacology. 34:356–66. DOI: 10.1038/npp.2008.57. PMID: 18432190.
Article
34. Maldonado NM, Espejo PJ, Martijena ID, Molina VA. 2014; Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment. Eur Neuropsychopharmacol. 24:262–70. DOI: 10.1016/j.euroneuro.2013.10.005. PMID: 24182621.
Article
35. Abbas MG, Shoji H, Soya S, Hondo M, Miyakawa T, Sakurai T. 2015; Comprehensive behavioral analysis of male Ox1r (-/-) mice showed implication of orexin receptor-1 in mood, anxiety, and social behavior. Front Behav Neurosci. 9:324. DOI: 10.3389/fnbeh.2015.00324. PMID: 26696848. PMCID: PMC4674555.
36. Yang L, Zou B, Xiong X, Pascual C, Xie J, Malik A, et al. 2013; Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci. 33:5275–84. DOI: 10.1523/JNEUROSCI.3200-12.2013. PMID: 23516292. PMCID: PMC3640412.
Article
37. Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, et al. 2013; Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun. 4:1547. DOI: 10.1038/ncomms2461. PMID: 23462990. PMCID: PMC3595130.
Article
38. Eacret D, Grafe LA, Dobkin J, Gotter AL, Renger JJ, Winrow CJ, et al. 2019; Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory. Behav Brain Res. 356:444–52. DOI: 10.1016/j.bbr.2018.05.032. PMID: 29902478.
Article
39. Wellman LL, Forcelli PA, Aguilar BL, Malkova L. 2016; Bidirectional control of social behavior by activity within basolateral and central amygdala of primates. J Neurosci. 36:8746–56. DOI: 10.1523/JNEUROSCI.0333-16.2016. PMID: 27535919. PMCID: PMC4987442.
Article
40. Flanigan ME, Aleyasin H, Li L, Burnett CJ, Chan KL, LeClair KB, et al. 2020; Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior. Nat Neurosci. 23:638–50. DOI: 10.1038/s41593-020-0617-7. PMID: 32284606. PMCID: PMC7195257.
Article
41. Ward RJ, Pediani JD, Milligan G. 2011; Heteromultimerization of cannabinoid CB(1) receptor and orexin OX(1) receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem. 286:37414–28. DOI: 10.1074/jbc.M111.287649. PMID: 21908614. PMCID: PMC3199489.
Article
42. Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. 2015; Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex. 25:1330–47. DOI: 10.1093/cercor/bht326. PMID: 24297328. PMCID: PMC4397574.
Article
43. Li Z, Wang J, Chen L, Zhang M, Wan Y. 2013; Basolateral amygdala lesion inhibits the development of pain chronicity in neuropathic pain rats. PLoS One. 8:e70921. DOI: 10.1371/journal.pone.0070921. PMID: 23940666. PMCID: PMC3733720.
Article
44. Cai YQ, Wang W, Paulucci-Holthauzen A, Pan ZZ. 2018; Brain circuits mediating opposing effects on emotion and pain. J Neurosci. 38:6340–9. DOI: 10.1523/JNEUROSCI.2780-17.2018. PMID: 29941444. PMCID: PMC6041794.
Article
45. Kosarmadar N, Ghasemzadeh Z, Rezayof A. 2015; Inhibition of microglia in the basolateral amygdala enhanced morphine-induced antinociception: possible role of GABAA receptors. Eur J Pharmacol. 765:157–63. DOI: 10.1016/j.ejphar.2015.08.027. PMID: 26297974.
Article
46. Pavlovic JM, Akcali D, Bolay H, Bernstein C, Maleki N. 2017; Sex-related influences in migraine. J Neurosci Res. 95:587–93. DOI: 10.1002/jnr.23903. PMID: 27870430.
47. Delaruelle Z, Ivanova TA, Khan S, Negro A, Ornello R, Raffaelli B, et al. 2018; Male and female sex hormones in primary headaches. J Headache Pain. 19:117. DOI: 10.1186/s10194-018-0922-7. PMID: 30497379. PMCID: PMC6755575.
Article
48. Maleki N. Maassen van den Brink A, MacGregor EA, editors. 2019. Gender differences in imaging studies in migraine. Gender and migraine. Springer;Cham: p. 101–11.
Article
49. Maleki N, Barmettler G, Moulton EA, Scrivani S, Veggeberg R, Spierings ELH, et al. 2015; Female migraineurs show lack of insular thinning with age. Pain. 156:1232–9. DOI: 10.1097/j.pain.0000000000000159. PMID: 25775358. PMCID: PMC4474740.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr