2. Kalivas PW, Stewart J. 1991; Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev. 16:223–244. DOI:
10.1016/0165-0173(91)90007-U. PMID:
1665095.
Article
7. Leroy K, Brion JP. 1999; Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat. 16:279–293. DOI:
10.1016/S0891-0618(99)00012-5. PMID:
10450875.
8. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH. 2001; Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 105:721–732. DOI:
10.1016/S0092-8674(01)00374-9. PMID:
11440715.
9. Frame S, Cohen P, Biondi RM. 2001; A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 7:1321–1327. DOI:
10.1016/S1097-2765(01)00253-2. PMID:
11430833.
Article
11. Xu CM, Wang J, Wu P, Zhu WL, Li QQ, Xue YX, Zhai HF, Shi J, Lu L. 2009; Glycogen synthase kinase 3beta in the nucleus accumbens core mediates cocaine-induced behavioral sensitization. J Neurochem. 111:1357–1368. DOI:
10.1111/j.1471-4159.2009.06414.x. PMID:
19799712.
12. Xu CM, Wang J, Wu P, Xue YX, Zhu WL, Li QQ, Zhai HF, Shi J, Lu L. 2011; Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J Neurochem. 118:126–139. DOI:
10.1111/j.1471-4159.2011.07281.x. PMID:
21517846.
Article
14. Kim WY, Jang JK, Lee JW, Jang H, Kim JH. 2013; Decrease of GSK3β phosphorylation in the rat nucleus accumbens core enhances cocaine-induced hyper-locomotor activity. J Neurochem. 125:642–648. DOI:
10.1111/jnc.12222. PMID:
23439225.
Article
15. Jongen-Rêlo AL, Voorn P, Groenewegen HJ. 1994; Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur J Neurosci. 6:1255–1264. DOI:
10.1111/j.1460-9568.1994.tb00315.x. PMID:
7526940.
Article
16. Zahm DS. 2000; An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev. 24:85–105. DOI:
10.1016/S0149-7634(99)00065-2. PMID:
10654664.
Article
17. Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE. 2008; The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct. 213:17–27. DOI:
10.1007/s00429-008-0175-3. PMID:
18256852. PMCID:
PMC2556127.
Article
18. Stewart J, Vezina P. Kalivas PW, Barnes CD, editors. 1988. Conditioning and behavioral sensitization. Sensitization in the nervous system. Telford Press;Caldwell: p. 207–224.
22. Miller JS, Barr JL, Harper LJ, Poole RL, Gould TJ, Unterwald EM. 2014; The GSK3 signaling pathway is activated by cocaine and is critical for cocaine conditioned reward in mice. PLoS One. 9:e88026. DOI:
10.1371/journal.pone.0088026. PMID:
24505362. PMCID:
PMC3913742.
Article
23. Shi X, Miller JS, Harper LJ, Poole RL, Gould TJ, Unterwald EM. 2014; Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology (Berl). 231:3109–3118. DOI:
10.1007/s00213-014-3491-8. PMID:
24595501. PMCID:
PMC4110417.
Article
24. Wickens RH, Quartarone SE, Beninger RJ. 2017; Inhibition of glycogen synthase kinase-3 by SB 216763 affects acquisition at lower doses than expression of amphetamine-conditioned place preference in rats. Behav Pharmacol. 28:262–271. DOI:
10.1097/FBP.0000000000000283. PMID:
27984209.
Article
25. Shi X, Barr JL, von Weltin E, Wolsh C, Unterwald EM. 2019; Differential roles of accumbal GSK3β in cocaine versus morphine-induced place preference, U50,488H-induced place aversion, and object memory. J Pharmacol Exp Ther. 371:339–347. DOI:
10.1124/jpet.119.259283. PMID:
31420527. PMCID:
PMC6800444.
Article
26. Franklin TR, Druhan JP. 2000; Involvement of the nucleus accumbens and medial prefrontal cortex in the expression of conditioned hyperactivity to a cocaine-associated environment in rats. Neuropsychopharmacology. 23:633–644. DOI:
10.1016/S0893-133X(00)00162-7. PMID:
11063919.
Article
27. Kim WY, Vezina P, Kim JH. 2008; Blockade of group II, but not group I, mGluRs in the rat nucleus accumbens inhibits the expression of conditioned hyperactivity in an amphetamine-associated environment. Behav Brain Res. 191:62–66. DOI:
10.1016/j.bbr.2008.03.010. PMID:
18433894.
Article
28. Yoon HS, Kim WY, Kim JH. 2010; Microinjection of CART peptide 55-102 into the nucleus accumbens core inhibits the expression of conditioned hyperactivity in a cocaine-associated environment. Behav Brain Res. 207:169–173. DOI:
10.1016/j.bbr.2009.10.003. PMID:
19818812.
Article
29. Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y. 2007; Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci. 27:12655–12663. DOI:
10.1523/JNEUROSCI.3926-07.2007. PMID:
18003845. PMCID:
PMC2117350.
Article
30. Fuchs RA, Ramirez DR, Bell GH. 2008; Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl). 200:545–556. DOI:
10.1007/s00213-008-1234-4. PMID:
18597075. PMCID:
PMC2613506.
Article
31. Chaudhri N, Sahuque LL, Schairer WW, Janak PH. 2010; Separable roles of the nucleus accumbens core and shell in context- and cue-induced alcohol-seeking. Neuropsychopharmacology. 35:783–791. DOI:
10.1038/npp.2009.187. PMID:
19924113. PMCID:
PMC2813976.
Article
32. Xie X, Lasseter HC, Ramirez DR, Ponds KL, Wells AM, Fuchs RA. 2012; Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats. Addict Biol. 17:287–299. DOI:
10.1111/j.1369-1600.2011.00325.x. PMID:
21521425. PMCID:
PMC4384648.
Article
33. Cruz FC, Babin KR, Leao RM, Goldart EM, Bossert JM, Shaham Y, Hope BT. 2014; Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci. 34:7437–7446. DOI:
10.1523/JNEUROSCI.0238-14.2014. PMID:
24872549. PMCID:
PMC4035511.
Article
34. Singer BF, Forneris J, Vezina P. 2014; Inhibiting cyclin-dependent kinase 5 in the nucleus accumbens enhances the expression of amphetamine-induced locomotor conditioning. Behav Brain Res. 275:96–100. DOI:
10.1016/j.bbr.2014.08.055. PMID:
25196634. PMCID:
PMC4253310.
Article
35. Singer BF, Bubula N, Li D, Przybycien-Szymanska MM, Bindokas VP, Vezina P. 2016; Drug-paired contextual stimuli increase dendritic spine dynamics in select nucleus accumbens neurons. Neuropsychopharmacology. 41:2178–2187. DOI:
10.1038/npp.2016.39. PMID:
26979294. PMCID:
PMC4908651.
Article
36. Beaulieu JM, Caron MG. 2008; Looking at lithium: molecular moods and complex behaviour. Mol Interv. 8:230–241. DOI:
10.1124/mi.8.5.8. PMID:
19015387.
Article
37. Beaulieu JM, Del'guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR. 2011; Beyond cAMP: the regulation of Akt and GSK3 by dopamine receptors. Front Mol Neurosci. 4:38. DOI:
10.3389/fnmol.2011.00038. PMID:
22065948. PMCID:
PMC3206544.
Article
38. Kim WY, Cai WT, Jang JK, Kim JH. 2020; Ezrin-radixin-moesin proteins are regulated by Akt-GSK3β signaling in the rat nucleus accumbens core. Korean J Physiol Pharmacol. 24:121–126. DOI:
10.4196/kjpp.2020.24.1.121. PMID:
31908581. PMCID:
PMC6940492.
Article
39. Paxinos G, Watson C. 2004. The rat brain in stereotaxic coordinates. Elsevier Academic Press;Boston: