4. Boye U, Willasey A, Walsh T, Tickle M, Pretty IA. 2013; Comparison of an intra-oral photographic caries assessment with an established visual caries assessment method for use in dental epidemiological studies of children. Community Dentist Oral Epidemiol. 41:526–533. DOI:
10.1111/cdoe.12049. PMID:
23566100.
Article
5. Fejerskov O, Nyvad B, Kidd EAM. 2015. Chaper 10. The foundations of good diagnostic practice. Dental Caries: the Disease and Its Clinical Management. 3th ed. Wiley Blackwell;Oxford: p. 173–190.
6. Alassaad SS. 2011; Incomplete cusp fractures: Early diagnosis and communication with patients using fiber-optic transillumination and intraoral photography. Gen Dent. 59:132–135. PMID:
21903523.
7. Obrochta JC. Efficient & Effective Use of the Intraoral Camera. Available from: media. dental care.com/media/en-US/education/ce367/ce367.pdf. Accessed 2012 Dec 19.
8. Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN, et al. 2015; Visual inspection for caries detection: a systematic review and meta-analysis. J Dent Res. 94:895–904. DOI:
10.1177/0022034515586763. PMID:
25994176.
9. Kim BM. 2018; Trend of image classification technology based on deep learning. The Journal of The Korean Institute of Communication Sciences. 35(12):8–14.
10. Gook KH. 2019; Artificial intelligence technology and examples of industrial application. Weekly technology trend. 20:5–27.
11. Song KD, Kim M, Do S. 2019; The latest trends in the use of deep learning in radiology illustrated through the stages of deep learning algorithm development. J Korean Soc Radiol. 80(2):202–212. DOI:
10.3348/jksr.2019.80.2.202.
Article
12. Choe Gh. 2018; Latest Research Trends in Convolutional Neural Networks. Communications of the Korean Institute of Information Scientists and Engineers. 36(2):25–31.
13. Simonyan K, Zisserman A. 2015; Very deep convolutional networks for large-scale image recognition. arXiv 2015;1409.1556.
15. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. 2021; Developments, application, and performance of artificial intelligence in dentistry-a systematic review. J Dent Sci. 16(1):508–522. DOI:
10.1016/j.jds.2020.06.019. PMID:
33384840. PMCID:
PMC7770297.
17. Ministry of Health & Welfare. 2019. 2018 Korean National Oral Health Survey. :Ministry of Health & Welfare;Seoul: p. 382.
18. Deng J, Dong W, Socher R, Li LJ, Li FF. 2009. 06. ImageNet: A large-scale hierarchical image database. In : 2009 IEEE conference on computer Vision and Pattern Recognition; DOI:
10.1109/CVPR.2009.5206848.
Article
19. Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J. 2020; Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J Clin Medi. 9(2):392. DOI:
10.3390/jcm9020392. PMID:
32024114. PMCID:
PMC7074309.
Article
20. Kang MJ. 2020; Comparison of Gradient Descent for Deep Learning. Journal of the Korea Academia-Industrial cooperation Society. 21(2):189–94.
21. Fejerskov O, Nyvad B, Kidd EAM. Chaper 2. Dental Caries: what is it? Dental Caries: the Disease and Its Clinical Management. 3th ed. Wiley Blackwell;Oxford: p. 7–10.
22. Petersen PE, Baez RJ. World Health Organization. Oral health surveys: basic methods. 5th ed. World Health Organization .
23. Fejerskov O, Nyvad B, Kidd EAM. Chaper 3. Clinical feature of caries lesions. Dental Caries: the Disease and Its Clinical Management. 3th ed. Wiley Blackwell;Oxford: p. 11–20.
24. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, et al. 2007; The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol. 35(3):170–178. DOI:
10.1111/j.1600-0528.2007.00347.x. PMID:
17518963.
Article
25. Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN, et al. 2015; Visual inspection for caries detection: a systematic review and meta-analysis. J Dent Res. 94:895–904. DOI:
10.1177/0022034515586763. PMID:
25994176.
26. Hong JY, Park SH, Jung YJ. 2020; Artificial intelligence based medical imaging: An Overview. Journal of Radiological Science and Technology. 43(3):195–208. DOI:
10.17946/JRST.2020.43.3.195.
27. Krizhevsky A, Sutskeve I, Hinton GE. 2012; Imagenet classification with deep convolutional neural networks. NIPS. 25:1097–1105.
Article
28. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. 2015; Going deeper with convolutions. In:. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1–9. DOI:
10.1109/CVPR.2015.7298594.
29. Prajapati SA, Nagaraj R, Mitra S. 2017; Classification of dental diseases using CNN and transfer learning. In: 2017 5th International Symposium on Computational and Business Intelligence (ISCBI). IEEE. 70–74. DOI:
10.1109/ISCBI.2017.8053547.
30. Devito KL, De Souza Barbosa F, Felippe Filho WN. 2008; An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 106:879e84. DOI:
10.1016/j.tripleo.2008.03.002. PMID:
18718785.
Article
31. Lee JH, Kim DH, Jeong SN, Choi SH. 2018; (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 77:106–111. DOI:
10.1016/j.jdent.2018.07.015. PMID:
30056118.
32. Schwendicke F, Elhennawy K, Paris S. 2020; Friebertshäuser P, Krois J. Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study. J Dent. 92:103260. DOI:
10.1016/j.jdent.2019.103260. PMID:
31821853.
33. Kim SJ. 2019. Reliability evaluation of dental caries detection using deep learning [master's thesis]. Seoul National University;Seoul: [Korean].