1. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng. 2018; 3:173–182.
Article
2. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42:60–88.
Article
3. Topol E. There's been a recent burst of peer-reviewed deep neural network #AI publications in medicine. Available at.https://twitter.com/EricTopol/status/1051174567882907648. Published Oct 13, 2018. Accessed Jan 1,. 2019.
4. Shin SY, Lyu Y, Shin Y, Choi HJ, Park J, Kim WS, et al. Lessons learned from development of de-identification system for biomedical research in a Korean Tertiary Hospital.Healthc Inform Res. 2013; 19:102–109.
5. Batten L, Kim DS, Zhang X, Li G.Applications and Techniques in Information Security: 8th International Confer ence, ATIS 2017. Auckland: Springer;2017.
6. Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, et al. Distributed deep learning networks among institutions for medical imaging.J Am Med Inform Assoc. 2018; 25:945–954.
7. Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to massive label noise. .arXiv preprint 2017;arX-iv: 1705.10694.
8. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning.IEEE Trans Med Imaging. 2016; 35:1285–1298.
9. Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, et al. Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation.arXiv preprint. 2015; arXiv:1506. .06448.
10. Lee H, Kim M, Do S. Practical window setting optimization for medical image deep learning.arXiv preprint. 2018; arXiv:1812. .00572.
11. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.arXiv preprint. 2015; arXiv:1512. .03385.
12. Huang G, Liu Z, Van der Maaten L, Weinberger KQ. ensely connected convolutional networks.arXiv preprint. 2016; arXiv:1608. .06993.
13. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv preprint 2015: arXiv: 1512.00567.
14. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation.arXiv preprint. 2015; arXiv:1812. .00572.
15. Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications. arXiv preprint. 2016; arXiv:1605. .07678.