J Neurocrit Care.  2021 Dec;14(2):78-87. 10.18700/jnc.210018.

Basic considerations on magnesium in the management of neurocritical patients

Affiliations
  • 1Medical and Surgical Research Center, Cartagena, Colombia
  • 2Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia
  • 3Latin American Council of Neurocritical Care, Cartagena, Colombia
  • 4School of Medicine, Universidad del Magdalena, Santa Marta, Colombia
  • 5School of Medicine, Universidad de la Sabana, Chía, Colombia
  • 6School of Medicine, Fundación Universitaria Juan N Corpas, Bogotá, Colombia
  • 7Colombian Clinical Research Group in Neurocritical Care, School of Medicine, Fundación Universitaria Autonoma de las Americas, Pereira, Colombia
  • 8School of Medicine, Universidad de Manizales, Manizales, Colombia
  • 9Department of Intensive Care, Regions Hospital, St Paul, MN, USA

Abstract

Magnesium is an essential chemical element in human life. In the brain, it is physiologically responsible for a large number of processes involved in intracellular homeostasis, blood-brain barrier integrity, protein synthesis, neuronal proliferation, aging, and apoptosis. Considering that neurocritical care is a relatively new discipline in certain regions of the world and is an independent protective factor of neurological diseases in critical care, it is essential to disseminate basic concepts and utilities of tools that can positively impact the neurological disease burden. Magnesium and its use in neurocritical care are poorly understood. Therefore, this study aimed to review basic concepts regarding the physiology of magnesium in neurological dynamics, its role in the pathophysiology of neurological disorders, and the outcome of its use in the management of neurocritical illnesses.

Keyword

Magnesium; Magnesium deficiency; Physiology; Nervous system diseases; Neurocritical care

Figure

  • Fig. 1. Neuroprotective mechanisms of magnesium against blood-brain barrier disruption. NMDA, N-methyl-D-aspartate; AQP-4, aquaporin-4. Created by the authors using BioRender.


Reference

1. Vink R, Nechifor M. Magnesium in the central nervous system. Adelaide: University of Adelaide Press;2011.
2. Wolahan SM, Hirt D, Glenn TC. Translational metabolomics of head injury: exploring dysfunctional cerebral metabolism with ex vivo NMR spectroscopy-based metabolite quantification. In : Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton, FL: CRC Press/Taylor & Francis;2015.
3. Botturi A, Ciappolino V, Delvecchio G, Boscutti A, Viscardi B, Brambilla P. The role and the effect of magnesium in mental disorders: a systematic review. Nutrients. 2020; 12:1661.
Article
4. Xue W, You J, Su Y, Wang Q. The effect of magnesium deficiency on neurological disorders: a narrative review article. Iran J Public Health. 2019; 48:379–87.
5. Chang JJ, Armonda R, Goyal N, Arthur AS. Magnesium: pathophysiological mechanisms and potential therapeutic roles in intracerebral hemorrhage. Neural Regen Res. 2019; 14:1116–21.
Article
6. Maas AI, Murray GD. Magnesium for neuroprotection after traumatic brain injury. Lancet Neurol. 2007; 6:20–1.
Article
7. Kramer AH, Couillard P. Neurocritical care: a growing international collaborative. Neurocrit Care. 2020; 32:80–3.
Article
8. Porcayo-Liborio S, Rivera-Durón E, Orta-San-Juan D. The evolution of neuro-critical care in Mexico. Rev Mex Anest. 2010; 33:50–5.
9. Suarez JI, Zaidat OO, Suri MF, Feen ES, Lynch G, Hickman J, et al. Length of stay and mortality in neurocritically ill patients: impact of a specialized neurocritical care team. Crit Care Med. 2004; 32:2311–7.
Article
10. Varelas PN, Conti MM, Spanaki MV, Potts E, Bradford D, Sunstrom C, et al. The impact of a neurointensivist-led team on a semiclosed neurosciences intensive care unit. Crit Care Med. 2004; 32:2191–8.
Article
11. World Health Organization. Global burden of neurological disorders: estimates and projections [Internet]. Geneva: World Health Organization;2007. [cited 2021 Jun 14]. Available from: https://www.who.int/mental_health/neurology/chapter_2_neuro_disorders_public_h_challenges.pdf.
12. Amory CF, Varelas PN. Magnesium and hydrogen in subarachnoid hemorrhage: is neuroprotection finally a reality? Stroke. 2021; 52:28–30.
13. Dorhout Mees SM, Algra A, Vandertop WP, van Kooten F, Kuijsten HA, Boiten J, et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): a randomised placebo-controlled trial. Lancet. 2012; 380:44–9.
14. van den Bergh WM, Dijkhuizen RM, Rinkel GJ. Potentials of magnesium treatment in subarachnoid haemorrhage. Magnes Res. 2004; 17:301–13.
15. van den Bergh WM, Algra A, van Kooten F, Dirven CM, van Gijn J, Vermeulen M, et al. Magnesium sulfate in aneurysmal subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2005; 36:1011–5.
16. Venkatasubba Rao CP, Suarez JI. Magnesium and neuroprotection in subarachnoid haemorrhage. Lancet. 2012; 380:9–11.
Article
17. Wong GK, Poon WS. Magnesium sulphate for aneurysmal subarachnoid hemorrhage: why, how, and current controversy. Acta Neurochir Suppl. 2013; 115:45–8.
Article
18. Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie trial: a randomised placebo-controlled trial. Lancet. 2002; 359:1877–90.
19. Belfort MA, Anthony J, Saade GR, Allen JC Jr; Nimodipine Study Group. A comparison of magnesium sulfate and nimodipine for the prevention of eclampsia. N Engl J Med. 2003; 348:304–11.
Article
20. McLean RM; Nimodipine Study Group. Magnesium and its therapeutic uses: a review. Am J Med. 1994; 96:63–76.
Article
21. McKee JA, Brewer RP, Macy GE, Borel CO, Reynolds JD, Warner DS. Magnesium neuroprotection is limited in humans with acute brain injury. Neurocrit Care. 2005; 2:342–51.
Article
22. Li W, Bai YA, Li YJ, Liu KG, Wang MD, Xu GZ, et al. Magnesium sulfate for acute traumatic brain injury. J Craniofac Surg. 2015; 26:393–8.
Article
23. Sitzia C, Sterlicchio M, Crapanzano C, Dozio E, Vianello E, Corsi Romanelli MM. Intra-erythrocytes magnesium deficiency could reflect cognitive impairment status due to vascular disease: a pilot study. J Transl Med. 2020; 18:458.
Article
24. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012; 5(Suppl 1):i3–14.
Article
25. Barbosa FT, Barbosa LT, Jucá MJ, Cunha RM. Applications of magnesium sulfate in obstetrics and anesthesia. Rev Bras Anestesiol. 2010; 60:104–10.
Article
26. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. 2013; 4:378S–383S.
Article
27. Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients. 2015; 7:8199–226.
Article
28. Stangherlin A, O'Neill JS. Signal transduction: magnesium manifests as a second messenger. Curr Biol. 2018; 28:R1403–5.
29. Seyama T, Kamei Y, Iriyama T, Imada S, Ichinose M, Toshimitsu M, et al. Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes. J Obstet Gynaecol Res. 2018; 44:601–7.
Article
30. Sun Q, Weinger JG, Mao F, Liu G. Regulation of structural and functional synapse density by L-threonate through modulation of intraneuronal magnesium concentration. Neuropharmacology. 2016; 108:426–39.
Article
31. Spasov AA, Iezhitsa IN, Kravchenko MS, Kharitonova MV. Features of central neurotransmission in animals in conditions of dietary magnesium deficiency and after its correction. Neurosci Behav Physiol. 2009; 39:645–53.
Article
32. Yamanaka R, Shindo Y, Oka K. Magnesium is a key player in neuronal maturation and neuropathology. Int J Mol Sci. 2019; 20:3439.
Article
33. Matsui Y, Funato Y, Imamura H, Miki H, Mizukami S, Kikuchi K. Visualization of long-term Mg2+ dynamics in apoptotic cells using a novel targetable fluorescent probe. Chem Sci. 2017; 8:8255–64.
Article
34. Ortega-Sierra MG, Durán-Daza RM, Carrera-Patiño SA, Rojas-Nuñez AX, Charry-Caicedo JI, Lozada-Martínez ID. Neuroeducation and neurorehabilitation in the neurosurgical patient: programs to be developed in Latin America and the Caribbean. J Neurosurg Sci. 2021; Jun. 10. [Epub]. https://doi.org/10.23736/S0390-5616.21.05439-4.
Article
35. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004; 45:545–52.
Article
36. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010; 37:13–25.
Article
37. Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol Med Today. 1996; 2:106–13.
Article
38. Allsop TF. Transfer of magnesium across the perfused choroid plexus of sheep. Aust J Biol Sci. 1986; 39:161–9.
Article
39. Allsop TF, Pauli JV. Magnesium concentrations in the ventricular and lumbar cerebrospinal fluid of hypomagnesaemic cows. Res Vet Sci. 1985; 38:61–4.
Article
40. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993; 265(4 Pt 2):F463–76.
Article
41. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003; 4:991–1001.
Article
42. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990; 429:47–62.
Article
43. Bara M, Guiet-Bara A. Potassium, magnesium and membranes: review of present status and new findings. Magnesium. 1984; 3:215–25.
44. Martin KJ, González EA, Slatopolsky E. Clinical consequences and management of hypomagnesemia. J Am Soc Nephrol. 2009; 20:2291–5.
Article
45. Panahi Y, Mojtahedzadeh M, Najafi A, Ghaini MR, Abdollahi M, Sharifzadeh M, et al. The role of magnesium sulfate in the intensive care unit. EXCLI J. 2017; 16:464–82.
46. Gragossian A, Bashir K, Friede R. Hypomagnesemia. Treasure Island, FL: StatPearls Publishing;2021.
47. Pham PC, Pham PA, Pham SV, Pham PT, Pham PM, Pham PT. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis. 2014; 7:219–30.
Article
48. Van Laecke S. Hypomagnesemia and hypermagnesemia. Acta Clin Belg. 2019; 74:41–7.
Article
49. Broman M, Hansson F, Klarin B. Analysis of hypo- and hypermagnesemia in an intensive care unit cohort. Acta Anaesthesiol Scand. 2018; 62:648–57.
Article
50. Cascella M, Vaqar S. Hypermagnesemia. Treasure Island, FL: StatPearls Publishing;2021.
51. Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord. 2003; 4:195–206.
52. Schelling JR. Fatal hypermagnesemia. Clin Nephrol. 2000; 53:61–5.
53. Bokhari SR, Siriki R, Teran FJ, Batuman V. Fatal hypermagnesemia due to laxative use. Am J Med Sci. 2018; 355:390–5.
Article
54. Gomes D, Pimentel J, Bentes C, Aguiar de Sousa D, Antunes AP, Alvarez A, et al. Consensus protocol for the treatment of super-refractory status epilepticus. Acta Med Port. 2018; 31:598–605.
Article
55. Zeiler FA, Matuszczak M, Teitelbaum J, Gillman LM, Kazina CJ. Magnesium sulfate for non-eclamptic status epilepticus. Seizure. 2015; 32:100–8.
Article
56. Kirkland AE, Sarlo GL, Holton KF. The role of magnesium in neurological disorders. Nutrients. 2018; 10:730.
Article
57. Macías-Ruíz VS, Cordero-Pérez MB, Vásquez-Cedeño DA, Saltos-Mata F. Factors associated with mortality of spontaneous intraparenchymal cerebral hemorrhage in patients over 50 years of age who attended the teodoro maldonado carbo hospital during the year 2017. Rev Ecuat Neurol. 2019; 28:10–5.
58. Jafari M, Di Napoli M, Lattanzi S, Mayer SA, Bachour S, Bershad EM, et al. Serum magnesium level and hematoma expansion in patients with intracerebral hemorrhage. J Neurol Sci. 2019; 398:39–44.
Article
59. Liotta EM, Prabhakaran S, Sangha RS, Bush RA, Long AE, Trevick SA, et al. Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage. Neurology. 2017; 89:813–9.
Article
60. Mejía C JA, Niño de Mejía MC, Ferrer Z LE, Cohen MD. Cerebral vasospasm secondary to subarachnoid hemorrhage due to ruptured intracerebral aneurysm. Rev Colomb Anesthesiol. 2007; 35:143–62.
61. Soliman R, Zohry G. Effect of magnesium sulphate and milrinone on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a randomized study. Braz J Anesthesiol. 2019; 69:64–71.
Article
62. Findlay JM, Nisar J, Darsaut T. Cerebral vasospasm: a review. Can J Neurol Sci. 2016; 43:15–32.
Article
63. Larsson SC, Traylor M, Burgess S, Boncoraglio GB, Jern C, Michaëlsson K, et al. Serum magnesium and calcium levels in relation to ischemic stroke: Mendelian randomization study. Neurology. 2019; 92:e944–50.
64. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014; 115:157–88.
Article
65. Saver JL, Kidwell C, Eckstein M, Starkman S; FAST-MAG Pilot Trial Investigators. Prehospital neuroprotective therapy for acute stroke: results of the Field Administration of Stroke Therapy-Magnesium (FAST-MAG) pilot trial. Stroke. 2004; 35:e106–8.
Article
66. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015; 372:528–36.
Article
67. Shkirkova K, Starkman S, Sanossian N, Eckstein M, Stratton S, Pratt F, et al. Paramedic initiation of neuroprotective agent infusions: successful achievement of target blood levels and attained level effect on clinical outcomes in the FAST-MAG pivotal trial (field administration of stroke therapy-magnesium). Stroke. 2017; 48:1901–7.
68. Pan WH, Lai YH, Yeh WT, Chen JR, Jeng JS, Bai CH, et al. Intake of potassium- and magnesium-enriched salt improves functional outcome after stroke: a randomized, multicenter, double-blind controlled trial. Am J Clin Nutr. 2017; 106:1267–73.
Article
69. Bechler K, Shkirkova K, Saver JL, Starkman S, Hamilton S, Liebeskind DS, et al. The effect of early treatment with intravenous magnesium sulfate on the incidence of cardiac comorbidities in hospitalized stroke patients. Cardiovasc Ther. 2020; 2020:1494506.
Article
70. Wong GK, Poon WS, Chan MT, Boet R, Gin T, Ng SC, et al. Intravenous magnesium sulphate for aneurysmal subarachnoid hemorrhage (IMASH): a randomized, double-blinded, placebo-controlled, multicenter phase III trial. Stroke. 2010; 41:921–6.
71. Takeuchi S, Kumagai K, Toyooka T, Otani N, Wada K, Mori K. Intravenous hydrogen therapy with intracisternal magnesium sulfate infusion in severe aneurysmal subarachnoid hemorrhage. Stroke. 2021; 52:20–7.
Article
72. Fang X, Wang K, Han D, He X, Wei J, Zhao L, et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med. 2016; 14:210.
Article
73. Xu R, Wang L, Sun L, Dong J. Neuroprotective effect of magnesium supplementation on cerebral ischemic diseases. Life Sci. 2021; 272:119257.
Article
74. Lee JS, Han YM, Yoo DS, Choi SJ, Choi BH, Kim JH, et al. A molecular basis for the efficacy of magnesium treatment following traumatic brain injury in rats. J Neurotrauma. 2004; 21:549–61.
Article
75. Stippler M, Fischer MR, Puccio AM, Wisniewski SR, Carson-Walter EB, Dixon CE, et al. Serum and cerebrospinal fluid magnesium in severe traumatic brain injury outcome. J Neurotrauma. 2007; 24:1347–54.
Article
76. Godoy DA, Pahnke P, Piñero GR, Videtta W, Aguilera S. Intensive care in severe cranioencephalic trauma. Neurociencias Colomb. 2016; 23:193–220.
77. Lyons MW, Blackshaw WJ. Does magnesium sulfate have a role in the management of severe traumatic brain injury in civilian and military populations? A systematic review and meta-analysis. J R Army Med Corps. 2018; 164:442–9.
Article
Full Text Links
  • JNC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr