1. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet. 2017; 389:1907–18.
Article
2. Badyda A, Gayer A, Czechowski PO, Maje wski G, Dąbrowiecki P. Pulmonary function and incidence of selected respiratory diseases depending on the exposure to ambient pm(10). Int J Mol Sci. 2016; 17:1954.
Article
3. Baldacci S, Maio S, Cerrai S, Sarno G, Baïz N, Simoni M, et al. Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med. 2015; 109:1089–104.
Article
4. Renzi M, Cerza F, Gariazzo C, Agabiti N, Cascini S, Di Domenicantonio R, et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ Int. 2018; 112:68–76.
Article
5. Brook RD, Bard RL, Morishita M, Dvonch JT, Wang L, Yang HY, et al. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ Health Perspect. 2014; 122:624–30.
Article
6. Darbre PD. Overview of air pollution and endocrine disorders. Int J Gen Med. 2018; 11:191–207.
Article
7. Vehik K, Dabelea D. The changing epidemiology of type 1 diabetes: why is it going through the roof? Diabetes Metab Res Rev. 2011; 27:3–13.
Article
8. Howard SG. Exposure to environmental chemicals and type 1 diabetes: an update. J Epidemiol Community Health. 2019; 73:483–8.
Article
9. Hathout EH, Beeson WL, Ischander M, Rao R, Mace JW. Air pollution and type 1 diabetes in children. Pediatr Diabetes. 2006; 7:81–7.
Article
10. Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes. 2002; 3:184–8.
Article
11. Malmqvist E, Larsson HE, Jönsson I, Rignell-Hydbom A, Ivarsson SA, Tinnerberg H, et al. Maternal exposure to air pollution and type 1 diabetes--accounting for genetic factors. Environ Res. 2015; 140:268–74.
12. Elten M, Donelle J, Lima I, Burnett RT, Weichenthal S, Stieb DM, et al. Ambient air pollution and incidence of earlyonset paediatric type 1 diabetes: a retrospective populationbased cohort study. Environ Res. 2020; 184:109291.
Article
13. Taha-Khalde A, Haim A, Karakis I, Shashar S, Biederko R, Shtein A, et al. Air pollution and meteorological conditions during gestation and type 1 diabetes in offspring. Environ Int. 2021; 154:106546.
Article
14. B e yerlein A, Krasmann M, Thiering E, Kusian D, Markevych I, D'Orlando O, et al. Ambient air pollution and early manifestation of type 1 diabetes. Epidemiology. 2015; 26:e31–2.
Article
15. Di Ciaula A. Type i diabetes in paediatric age in apulia (italy): incidence and associations with outdoor air pollutants. Diabetes Res Clin Pract. 2016; 111:36–43.
Article
16. R osenbauer J, Tamayo T, B ächle C, Stahl-Pehe A, Landwehr S, Sugiri D, et al. Re: Ambient air pollution and early manifestation of type 1 diabetes. Epidemiology. 2016; 27:e25–6.
17. Tamayo T, Rathmann W, Stahl-Pehe A, Landwehr S, Sugiri D, Krämer U, et al. No adverse effect of outdoor air pollution on hba1c in children and young adults with type 1 diabetes. Int J Hyg Environ Health. 2016; 219:349–55.
Article
18. Lanzinger S, Rosenbauer J, Sugiri D, Schikowski T, Treiber B, Klee D, et al. Impact of long-term air pollution exposure on metabolic control in children and adolescents with type 1 diabetes: results from the dpv registry. Diabetologia. 2018; 61:1354–61.
Article
19. Michalska M, Zorena K, Wąż P, Bartoszewicz M, BrandtVarma A, Ślęzak D, et al. Gaseous pollutants and particulate matter (pm) in ambient air and the number of new cases of type 1 diabetes in children and adolescents in the pomeranian voivodeship, poland. Biomed Res Int. 2020; 2020:1648264.
Article
20. Sagai M, Bocci V. Mechanisms of action involved in ozone therapy: is healing induced via a mild oxidative stress? Med Gas Res. 2011; 1:29.
Article
21. Holtcamp W. Obesogens: an environmental link to obesity. Environ Health Perspect. 2012; 120:a62–8.
Article
22. Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, et al. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnanc y. Am J Epidemiol. 2012; 175:1163–72.
23. Ino T, Shibuya T, Saito K, Inaba Y. Relationship between body mass index of offspring and maternal smoking during pregnancy. Int J Obes (Lond). 2012; 36:554–8.
Article
24. Fleisch AF, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, et al. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain. Epidemiology. 2015; 26:43–50.
25. Fleisch AF, Luttmann-Gibson H, Perng W, Rifas-Shiman SL, Coull BA, Kloog I, et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr Obes. 2017; 12:48–57.
Article
26. Mao G, Nachman RM, Sun Q, Zhang X, Koehler K, Chen Z, et al. Individual and joint effects of early-life ambient exposure and maternal prepregnancy obesity on childhood overweight or obesity. Environ Health Perspect. 2017; 125:067005.
27. Chiu YM, Hsu HL, Wilson A, Coull BA, Pendo MP, Baccarelli A, et al. Prenatal particulate air pollution exposure and body composition in urban preschool children: examining sensitive windows and sex-specific associations. Environ Res. 2017; 158:798–805.
Article
28. Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, et al. Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index. Environ Health. 2018; 17:64.
Article
29. Fleisch AF, Aris IM, Rifas-Shiman SL, Coull BA, LuttmannGibson H, Koutrakis P, et al. Prenatal exposure to traffic pollution and childhood body mass index trajectory. Front Endocrinol (Lausanne). 2018; 9:771.
Article
30. Huang JV, Leung GM, Schooling CM. The association of air pollution with body mass index: evidence from hong kong's "children of 1997" birth cohort. Int J Obes (Lond). 2019; 43:62–72.
Article
31. Jerrett M, McConnell R, Chang CC, Wolch J, Reynolds K, Lurmann F, et al. Automobile traffic around the home and attained body mass index: a longitudinal cohort study of children aged 10-18 years. Prev Med. 2010; 50 Suppl 1:S50–8.
Article
32. Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 2014; 13:49.
Article
33. McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the southern california children's health study. Environ Health Perspect. 2015; 123:360–6.
Article
34. Alderete TL, Habre R, Toledo-Corral CM, Berhane K, Chen Z, Lurmann FW, et al. Longitudinal associations between ambient air pollution with insulin sensitivity, β-cell function, and adiposity in los angeles latino children. Diabetes. 2017; 66:1789–96.
Article
35. Dong GH, Qian Z, Liu MM, Wang D, Ren WH, Flick LH, et al. Ambient air pollution and the prevalence of obesity in Chinese children: the seven northeastern cities study. Obesity. 2014; 22:795–800.
Article
36. Bloemsma LD, Wijga AH, Klompmaker JO, Janssen NAH, Smit HA, Koppelman GH, et al. The associations of air pollution, traffic noise and green space with overweight throughout childhood: the PIAMA birth cohort study. Environ Res. 2019; 169:348–56.
Article
37. De Bont J, Casas M, Barrera-Gómez J, Cirach M, Rivas I, Valvi D, et al. Ambient air pollution and overweight and obesity in school-aged children in barcelona, spain. Environ Int. 2019; 125:58–64.
Article
38. Guo Q, Xue T, Jia C, Wang B, Cao S, Zhao X, et al. Association between exposure to fine particulate matter and obesity in children: a national representative crosssectional study in China. Environ Int. 2020; 143:105950.
Article
39. Zheng H, Xu Z, Wang Q, Ding Z, Zhou L, Xu Y, et al. Longterm exposure to ambient air pollution and obesity in school-aged children and adolescents in Jiangsu province of China. Environ Res. 2021; 195:110804.
Article
40. Zhang Z, Dong B, Chen G, Song Y, Li S, Yang Z, et al. Ambient air pollution and obesity in school-aged children and adolescents: A multicenter study in China. Sci Total Environ. 2021; 771:144583.
Article
41. De Bont J, Díaz Y, de Castro M, Cirach M, Basagaña X, Nieuwenhuijsen M, et al. Ambient air pollution and the development of overweight and obesity in children: a large longitudinal study. Int J Obes (Lond). 2021; 45:1124–32.
Article
42. Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D. Traffic-related air pollution and childhood obesity in an italian birth cohort. Environ Res. 2018; 160:479–86.
Article
43. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016; 388:1545–602.
44. Balti EV, Echouffo-Tcheugui JB, Yako YY, Kengne AP. Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014; 106:161–72.
Article
45. Liu F, Chen G, Huo W, Wang C, Liu S, Li N, et al. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Environ Pollut. 2019; 252:1235–45.
Article
46. Yang BY, Fan S, Thiering E, Seissler J, Nowak D, Dong GH, et al. Ambient air pollution and diabetes: a systematic review and meta-analysis. Environ Res. 2020; 180:108817.
Article
47. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and north America: systematic review and meta-analysis. Environ Health Perspect. 2015; 123:381–9.
Article
48. Madhloum N, Janssen BG, Martens DS, Saenen ND, Bijnens E, Gyselaers W, et al. Cord plasma insulin and in utero exposure to ambient air pollution. Environ Int. 2017; 105:126–32.
Article
49. Moody EC, Cantoral A, Tamayo-Ortiz M, Pizano-Zárate ML, Schnaas L, Kloog I, et al. Association of prenatal and perinatal exposures to particulate matter with changes in hemoglobin a1c levels in children aged 4 to 6 years. JAMA Netw Open. 2019; 2:e1917643.
50. Pedersen M, Halldorsson TI, Ketzel M, Grandström C, Raaschou-Nielsen O, Jensen SS, et al. Associations between ambient air pollution and noise from road traffic with blood pressure and insulin resistance in children from Denmark. Environ Epidemiol. 2019; 3:e069.
Article
51. Thiering E, Cyrys J, Kratzsch J, Meisinger C, Hoffmann B, Berdel D, et al. Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia. 2013; 56:1696–704.
Article
52. Thiering E, Markevych I, Brüske I, Fuertes E, Kratzsch J, Sugiri D, et al. Associations of residential long-term air pollution exposures and satellite-derived greenness with insulin resistance in German adolescents. Environ Health Perspect. 2016; 124:1291–8.
Article
53. Toledo-Corral CM, Alderete TL, Habre R, Berhane K, Lurmann FW, Weigensberg MJ, et al. Effects of air pollution exposure on glucose metabolism in los angeles minority children. Pediatr Obes. 2018; 13:54–62.
Article
54. Zhang JS, Gui ZH, Zou ZY, Yang BY, Ma J, Jing J, et al. Longterm exposure to ambient air pollution and metabolic syndrome in children and adolescents: a national crosssectional study in china. Environ Int. 2021; 148:106383.
Article
55. Ghosh R, Gauderman WJ, Minor H, Youn HA, Lurmann F, Cromar KR, et al. Air pollution, weight loss and metabolic benefits of bariatric surgery: a potential model for study of metabolic effects of environmental exposures. Pediatr Obes. 2018; 13:312–20.
Article
56. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Edc-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015; 36:E1–150.
Article
57. Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. Am J Epidemiol. 2013; 178:701–13.
Article
58. Iijima K, Otake T, Yoshinaga J, Ikegami M, Suzuki E, Naruse H, et al. Cadmium, lead, and selenium in cord blood and thyroid hormone status of newborns. Biol Trace Elem Res. 2007; 119:10–8.
Article
59. Soldin OP, Goughenour BE, Gilbert SZ, Landy HJ, Soldin SJ. Thyroid hormone levels associated with active and passive cigarette smoking. Thyroid. 2009; 19:817–23.
Article
60. Janssen BG, Saenen ND, Roels HA, Madhloum N, Gyselaers W, Lefebvre W, et al. Fetal thyroid function, birth weight, and in utero exposure to fine particle air pollution: a birth cohort study. Environ Health Perspect. 2017; 125:699–705.
Article
61. Howe CG, Eckel SP, Habre R, Girguis MS, Gao L, Lurmann FW, et al. Association of prenatal exposure to ambient and traffic-related air pollution with newborn thyroid function: findings from the children's health study. JAMA Netw Open. 2018; 1:e182172.
62. Wang X, Liu C, Zhang M, Han Y, Aase H, Villanger GD, et al. Evaluation of maternal exposure to pm(2.5) and its components on maternal and neonatal thyroid function and birth weight: a cohort study. Thyroid. 2019; 29:1147–57.
Article
63. Shang L, Huang L, Yang W, Qi C, Yang L, Xin J, et al. Maternal exposure to PM(2.5) may increase the risk of congenital hypothyroidism in the offspring: a national database based study in China. BMC Public Health. 2019; 19:1412.
Article
64. Parent AS, Franssen D, Fudvoye J, Gérard A, Bourguignon JP. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol. 2015; 38:12–36.
Article
65. Maisonet M, Christensen KY, Rubin C, Holmes A, Flanders WD, Heron J, et al. Role of prenatal characteristics and early growth on pubertal attainment of British girls. Pediatrics. 2010; 126:e591–600.
Article
66. Windham GC, Lum R, Voss R, Wolff M, Pinney SM, Teteilbaum SL, et al. Age at pubertal onset in girls and tobacco smoke exposure during pre- and postnatal susceptibility windows. Epidemiology. 2017; 28:719–27.
Article
67. Huang JV, Leung GM, Schooling CM. The association of air pollution with pubertal development: Evidence from Hong Kong's "children of 1997" birth cohort. Am J Epidemiol. 2017; 185:914–23.
Article
68. McGuinn LA, Voss RW, Laurent CA, Greenspan LC, Kushi LH, Windham GC. Residential proximity to traffic and female pubertal development. Environ Int. 2016; 94:635–41.
Article
69. Jung EM, Kim HS, Park H, Ye S, Lee D, Ha EH. Does exposure to PM(10) decrease age at menarche? Environ Int. 2018; 117:16–21.
Article
70. Zhao T, Triebner K, Markevych I, Standl M, Altug H, de Hoogh K, et al. Outdoor air pollution and hormoneassessed pubertal development in children: results from the GINIplus and LISA birth cohorts. Environ Int. 2021; 152:106476.
Article
71. Ritz SA. Air pollution as a potential contributor to the 'epidemic' of autoimmune disease. Med Hypotheses. 2010; 74:110–7.
Article
72. L i Z, Potts-Kant EN, Garantziotis S, Foster WM, Hollingsworth JW. Hyaluronan signaling during ozoneinduced lung injury requires tlr4, myd88, and tirap. PLoS One. 2011; 6:e27137.
Article
73. Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, et al. Ozone exposure is associated with acute changes in inflammation, fibrinolysis, and endothelial cell function in coronary artery disease patients. Environ Health. 2017; 16:126.
Article
74. Pilz V, Wolf K, Breitner S, Rückerl R, Koenig W, Rathmann W, et al. C-reactive protein (crp) and long-term air pollution with a focus on ultrafine particles. Int J Hyg Environ Health. 2018; 221:510–8.
Article
75. Dobreva ZG, Kostadinova GS, Popov BN, Petkov GS, Stanilova SA. Proinflammatory and anti-inflammatory cytokines in adolescents from southeast bulgarian cities with different levels of air pollution. Toxicol Ind Health. 2015; 31:1210–7.
Article
76. Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, et al. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J. 2012; 26:4743–54.
Article
77. Kodavanti UP. Stretching the stress boundary: linking air pollution health effects to a neurohormonal stress response. Biochim Biophys Acta. 2016; 1860:2880–90.
Article
78. Gackière F, Saliba L, Baude A, Bosler O, Strube C. Ozone inhalation activates stress-responsive regions of the cns. J Neurochem. 2011; 117:961–72.
Article
79. Miller DB, Ghio AJ, Karoly ED, Bell LN, Snow SJ, Madden MC, et al. Ozone exposure increases circulating stress hormones and lipid metabolites in humans. Am J Respir Crit Care Med. 2016; 193:1382–91.
Article
80. Yan Z, Zhang H, Maher C, Arteaga-Solis E, Champagne FA, Wu L, et al. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (ppar) γ methylation in offspring, grand-offspring mice. PLoS One. 2014; 9:e110706.
Article
81. van den Hooven EH, Pierik FH, de Kluizenaar Y, Hofman A, van Ratingen SW, Zandveld PY, et al. Air pollution exposure and markers of placental growth and function: the generation r study. Environ Health Perspect. 2012; 120:1753–9.
Article
82. Lee PC, Talbott EO, Roberts JM, Catov JM, Sharma RK, Ritz B. Particulate air pollution exposure and c-reactive protein during early pregnancy. Epidemiology. 2011; 22:524–31.
Article
83. Vadillo-Ortega F, Osornio-Vargas A, Buxton MA, Sánchez BN, Rojas-Bracho L, Viveros-Alcaráz M, et al. Air pollution, inflammation and preterm birth: a potential mechanistic link. Med Hypotheses. 2014; 82:219–24.
Article
84. Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol. 2015; 36:90–107.
Article
85. Zhao CN, Xu Z, Wu GC, Mao YM, Liu LN, Qian W, et al. Emerging role of air pollution in autoimmune diseases. Autoimmun Rev. 2019; 18:607–14.
Article
86. Cerna M. Epigenetic regulation in etiology of type 1 diabetes mellitus. Int J Mol Sci. 2019; 21:36.
Article
87. Rzeczkowska PA, Hou H, Wilson MD, Palmert MR. Epigenetics: a new player in the regulation of mammalian puberty. Neuroendocrinology. 2014; 99:139–55.
Article
88. Sun B, Shi Y, Yang X, Zhao T, Duan J, Sun Z. DNA methylation: a critical epigenetic mechanism underlying the detrimental effects of airborne particulate matter. Ecotoxicol Environ Saf. 2018; 161:173–83.
Article
89. Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol. 2011; 8:20.
Article
90. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009; 119:538–46.
Article
91. Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Méjean L, et al. Benzo[a]pyrene impairs beta-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice. A novel molecular mechanism of toxicity for a common food pollutant. FEBS J. 2006; 273:1362–72.
92. Zou MH. Is nad(p)h oxidase a missing link for air pollution-enhanced obesity? Arterioscler Thromb Vasc Biol. 2010; 30:2323–4.
Article
93. Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005; 112:3930–6.
Article
94. Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005; 294:3003–10.
Article
95. Butalia S, Kaplan GG, Khokhar B, Rabi DM. Environmental risk factors and type 1 diabetes: past, present, and future. Can J Diabetes. 2016; 40:586–93.
Article
96. Fisher CL, Mannino DM, Herman WH, Frumkin H. Cigarette smoking and thyroid hormone levels in males. Int J Epidemiol. 1997; 26:972–7.
Article
97. Gondou A, Toyoda N, Nishikawa M, Yonemoto T, Sakaguchi N, Tokoro T, et al. Effect of nicotine on type 2 deiodinase activity in cultured rat glial cells. Endocr J. 1999; 46:107–12.
Article
98. Dong X, Wu W, Yao S, Li H, Li Z, Zhang L, et al. PM(2.5) disrupts thyroid hormone homeostasis through activation of the hypothalamic-pituitary-thyroid (HPT) axis and induction of hepatic transthyretin in female rats 2.5. Ecotoxicol Environ Saf. 2021; 208:111720.
Article
99. Lee JE, Jung HW, Lee YJ, Lee YA. Early-life exposure to endocrine-disrupting chemicals and pubertal development in girls. Ann Pediatr Endocrinol Metab. 2019; 24:78–91.
Article