J Rheum Dis.  2021 Oct;28(4):225-233. 10.4078/jrd.2021.28.4.225.

J-shaped Relationship Between Chronic Kidney Disease and Serum Uric Acid Levels: A Cross-sectional Study on the Korean Population

Affiliations
  • 1Department of Internal Medicine, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
  • 2Department of Rheumatology, Keimyung University Dongsan Medical Center, Daegu, Korea
  • 3Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
  • 4Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea

Abstract


Objective
Both hypouricemia and hyperuricemia are reportedly associated with reduced kidney function. This study investigated the association between uric acid levels and the risk of reduced renal function in men and women.
Methods
We conducted a cross-sectional study using data from a government-funded health examinee cohort of a Korean genome and epidemiological study. A total of 172,970 participants (58,981 men, 113,989 women) aged 40∼79 years were included. A logistic regression test was performed, and the odds ratio (OR) and 95% confidence interval (CI) were calculated to examine the relationship between stratified uric acid levels and the frequency of chronic kidney disease.
Results
As the uric acid level increased, the risk of reduced renal function increased. Moreover, for uric acid levels ≤2.0 mg/dL, the risk of reduced renal function was higher than that of the reference group. Among the total, man, and woman groups, a statistically significant association was observed in men (OR 1.71, 95% CI 0.945∼3.111, OR 5.003, 95% CI 1.405∼17.809, and OR 1.377, 95% CI 0.696∼2.724, respectively).
Conclusion
The OR of reduced renal function according to uric acid levels formed a J-shaped curve in both genders.

Keyword

Chronic kidney diseases; Hyperuricemia; Uric acid

Figure

  • Figure 1 Relationship between serum uric acid levels and eGFR. MDRD: Modification of Diet in Renal Disease, eGFR: estimated glomerular filtration rate.

  • Figure 2 Prevalence of reduced renal function according to serum uric acid levels. MDRD: Modification of Diet in Renal Disease, eGFR: estimated glomerular filtration rate, UA: uric acid level.

  • Figure 3 Prevalence of reduced renal function according to percentiles of serum uric acid levels (5th, 20th, 80th, and 95th). MDRD: Modification of Diet in Renal Disease, eGFR: estimated glomerular filtration rate, Q1: first quartile, Q2: second quartile, Q3: third quartile, Q4: fourth quartile, Q5: fifth quartile.

  • Figure 4 The odd ratio of reduced renal function in total, men, and women participants according to uric acid level.


Reference

1. Rock KL, Kataoka H, Lai JJ. 2013; Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 9:13–23. DOI: 10.1038/nrrheum.2012.143. PMID: 22945591. PMCID: PMC3648987.
Article
2. Singh JA. 2013; Racial and gender disparities among patients with gout. Curr Rheumatol Rep. 15:307. DOI: 10.1007/s11926-012-0307-x. PMID: 23315156. PMCID: PMC3545402.
Article
3. Singh JA, Gaffo A. 2020; Gout epidemiology and comorbidities. Semin Arthritis Rheum. 50(3S):S11–6. DOI: 10.1016/j.semarthrit.2020.04.008. PMID: 32620196.
Article
4. Maesaka JK, Fishbane S. 1998; Regulation of renal urate excretion: a critical review. Am J Kidney Dis. 32:917–33. DOI: 10.1016/S0272-6386(98)70067-8. PMID: 9856507.
Article
5. Roch-Ramel F, Guisan B. 1999; Renal transport of urate in humans. News Physiol Sci. 14:80–4. DOI: 10.1152/physiologyonline.1999.14.2.80. PMID: 11390825.
Article
6. Sharaf El Din UAA, Salem MM, Abdulazim DO. 2017; Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res. 8:537–48. DOI: 10.1016/j.jare.2016.11.004. PMID: 28748119. PMCID: PMC5512153.
Article
7. Kanda E, Muneyuki T, Kanno Y, Suwa K, Nakajima K. 2015; Uric acid level has a U-shaped association with loss of kidney function in healthy people: a prospective cohort study. PLoS One. 10:e0118031. DOI: 10.1371/journal.pone.0118031. PMID: 25658588. PMCID: PMC4320097.
Article
8. Wang S, Shu Z, Tao Q, Yu C, Zhan S, Li L. 2011; Uric acid and incident chronic kidney disease in a large health check-up population in Taiwan. Nephrology (Carlton). 16:767–76. DOI: 10.1111/j.1440-1797.2011.01513.x. PMID: 21854506.
Article
9. Park JH, Jo YI, Lee JH. 2020; Renal effects of uric acid: hyperuricemia and hypouricemia. Korean J Intern Med. 35:1291–304. DOI: 10.3904/kjim.2020.410. PMID: 32872730. PMCID: PMC7652664.
Article
10. Wakasugi M, Kazama JJ, Narita I, Konta T, Fujimoto S, Iseki K, et al. 2015; Association between hypouricemia and reduced kidney function: a cross-sectional population-based study in Japan. Am J Nephrol. 41:138–46. DOI: 10.1159/000381106. PMID: 25790961.
Article
11. Kim K, Go S, Son HE, Ryu JY, Lee H, Heo NJ, et al. 2020; Association between serum uric acid level and ESRD or death in a Korean population. J Korean Med Sci. 35:e254. DOI: 10.3346/jkms.2020.35.e254. PMID: 32686371. PMCID: PMC7371451.
Article
12. Kim Y, Han BG. KoGES group. 2017; Cohort profile: The Korean Genome and Epidemiology Study (KoGES) consortium. Int J Epidemiol. 46:1350. DOI: 10.1093/ije/dyx105. PMID: 28938752. PMCID: PMC5837323.
Article
13. Koo BS, Jeong HJ, Son CN, Kim SH, Kim HJ, Kim GH, et al. 2021; Distribution of serum uric acid levels and prevalence of hyper- and hypouricemia in a Korean general population of 172,970. Korean J Intern Med. 36(Suppl 1):S264–72. DOI: 10.3904/kjim.2020.116. PMID: 33227843. PMCID: PMC8009145.
Article
14. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. 1999; A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 130:461–70. DOI: 10.7326/0003-4819-130-6-199903160-00002. PMID: 10075613.
15. Levey AS, Greene T, Kusek JW, Beck GJ. 2000; A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 11:155A.
16. Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S. 2004; Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis. 44:642–50. DOI: 10.1016/S0272-6386(04)00934-5. PMID: 15384015.
Article
17. Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R. 2008; Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol. 19:2407–13. DOI: 10.1681/ASN.2008010080. PMID: 18799720. PMCID: PMC2588108.
Article
18. Park JT, Kim DK, Chang TI, Kim HW, Chang JH, Park SY, et al. 2009; Uric acid is associated with the rate of residual renal function decline in peritoneal dialysis patients. Nephrol Dial Transplant. 24:3520–5. DOI: 10.1093/ndt/gfp272. PMID: 19491381.
Article
19. Kuo CF, Luo SF, See LC, Ko YS, Chen YM, Hwang JS, et al. 2011; Hyperuricaemia and accelerated reduction in renal function. Scand J Rheumatol. 40:116–21. DOI: 10.3109/03009742.2010.507218. PMID: 20868309.
Article
20. Sedaghat S, Hoorn EJ, van Rooij FJ, Hofman A, Franco OH, Witteman JC, et al. 2013; Serum uric acid and chronic kidney disease: the role of hypertension. PLoS One. 8:e76827. DOI: 10.1371/journal.pone.0076827. PMID: 24265674. PMCID: PMC3827035.
Article
21. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. 2005; Hyperuricemia induces endothelial dysfunction. Kidney Int. 67:1739–42. DOI: 10.1111/j.1523-1755.2005.00273.x. PMID: 15840020.
Article
22. Hong Q, Qi K, Feng Z, Huang Z, Cui S, Wang L, et al. 2012; Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium. 51:402–10. DOI: 10.1016/j.ceca.2012.01.003. PMID: 22361139.
23. Esparza Martín N, García Nieto V. 2011; Hypouricemia and tubular transport of uric acid. Nefrologia. 31:44–50. DOI: 10.3265/Nefrologia.pre2010.Oct.10588. PMID: 21270912.
24. Suliman ME, Johnson RJ, García-López E, Qureshi AR, Molinaei H, Carrero JJ, et al. 2006; J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis. 48:761–71. DOI: 10.1053/j.ajkd.2006.08.019. PMID: 17059995.
Article
25. Uedono H, Tsuda A, Ishimura E, Nakatani S, Kurajoh M, Mori K, et al. 2017; U-shaped relationship between serum uric acid levels and intrarenal hemodynamic parameters in healthy subjects. Am J Physiol Renal Physiol. 312:F992–7. DOI: 10.1152/ajprenal.00645.2016. PMID: 28249837.
Article
26. Hirasaki S, Koide N, Fujita K, Ogawa H, Tsuji T. 1997; Two cases of renal hypouricemia with nephrolithiasis. Intern Med. 36:201–5. DOI: 10.2169/internalmedicine.36.201. PMID: 9144014.
Article
27. Ohta T, Sakano T, Ogawa T, Kato J, Awaya Y, Kihara H, et al. 2002; Exercise-induced acute renal failure with renal hypouricemia: a case report and a review of the literature. Clin Nephrol. 58:313–6. DOI: 10.5414/CNP58313. PMID: 12400848.
Article
28. Ohta T, Sakano T, Igarashi T, Itami N, Ogawa T. 2004; Exercise-induced acute renal failure associated with renal hypouricaemia: results of a questionnaire-based survey in Japan. Nephrol Dial Transplant. 19:1447–53. DOI: 10.1093/ndt/gfh094. PMID: 15150354.
Article
29. Nakamura A, Niimi R, Yanagawa Y. 2006; Renal hypouricemia in school-aged children: screening of serum uric acid level before physical training. Pediatr Nephrol. 21:1898–900. DOI: 10.1007/s00467-006-0255-7. PMID: 16955280.
Article
30. Kim YH, Cho JT. 2011; A case of exercise-induced acute renal failure with G774A mutation in SCL22A12 causing renal hypouricemia. J Korean Med Sci. 26:1238–40. DOI: 10.3346/jkms.2011.26.9.1238. PMID: 21935282. PMCID: PMC3172664.
Article
31. Shen H, Feng C, Jin X, Mao J, Fu H, Gu W, et al. 2014; Recurrent exercise-induced acute kidney injury by idiopathic renal hypouricemia with a novel mutation in the SLC2A9 gene and literature review. BMC Pediatr. 14:73. DOI: 10.1186/1471-2431-14-73. PMID: 24628802. PMCID: PMC3984694.
Article
32. Shichiri M, Iwamoto H, Marumo F. 1990; Diabetic hypouricemia as an indicator of clinical nephropathy. Am J Nephrol. 10:115–22. DOI: 10.1159/000168065. PMID: 2190467.
Article
33. Mumford SL, Dasharathy SS, Pollack AZ, Perkins NJ, Mattison DR, Cole SR, et al. 2013; Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study. Hum Reprod. 28:1853–62. DOI: 10.1093/humrep/det085. PMID: 23562957. PMCID: PMC3685334.
Article
34. Wingrove CS, Walton C, Stevenson JC. 1998; The effect of menopause on serum uric acid levels in non-obese healthy women. Metabolism. 47:435–8. DOI: 10.1016/S0026-0495(98)90056-7. PMID: 9550542.
Article
35. Hsu YH, Pai HC, Chang YM, Liu WH, Hsu CC. 2013; Alcohol consumption is inversely associated with stage 3 chronic kidney disease in middle-aged Taiwanese men. BMC Nephrol. 14:254. DOI: 10.1186/1471-2369-14-254. PMID: 24238625. PMCID: PMC3840676.
Article
36. Schaeffner ES, Kurth T, de Jong PE, Glynn RJ, Buring JE, Gaziano JM. 2005; Alcohol consumption and the risk of renal dysfunction in apparently healthy men. Arch Intern Med. 165:1048–53. DOI: 10.1001/archinte.165.9.1048. PMID: 15883245.
Article
37. Park M, Lee SM, Yoon HJ. 2019; Association between alcohol intake and measures of incident CKD: an analysis of nationwide health screening data. PLoS One. 14:e0222123. DOI: 10.1371/journal.pone.0222123. PMID: 31539384. PMCID: PMC6754126.
Article
Full Text Links
  • JRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr