Korean J Sports Med.  2021 Sep;39(3):77-90. 10.5763/kjsm.2021.39.3.77.

Clinical Exercise Prescription for Cardiovascular Health in Breast Cancer Survivors

Affiliations
  • 1Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA

Abstract

Conventional treatments accessible to breast cancer survivors after diagnosis include cancer therapies with cardiotoxic effects such as trastuzumab and/or anthracycline-based chemotherapy, which can result in undesirable cardiac injuries known as cancer therapy-induced cardiotoxicity. Cancer therapy-induced cardiotoxicity is among a variety of cardiovascular comorbidities responsible for increased mortality in cancer survivors, and when accompanied by preexisting cardiovascular comorbidities, this detrimental side effect becomes a major health concern. Breast cancer survivors may be predisposed to this additional concern due to preexisting comorbidities related to cardiovascular diseases such as obesity, hypertension, and type 2 diabetes. Research in the rapidly emerging field of study which focuses on improving cardiovascular health in cancer survivors, known as cardio-oncology, reveals that exercise can improve the aforementioned comorbidities in clinical settings. However, the evidence has not been comprehensively evaluated to prescribe exercise as a clinical therapeutic option to improve cardiovascular health in breast cancer survivors. Therefore, the purpose of this review is to summarize the current evidence on the effects of exercise on cardiovascular outcomes in women with breast cancer at three different time points; before, during, and after cancer therapy. In addition, current knowledge gaps and future directions in the field of exercise science and cardio-oncology will be addressed.

Keyword

Cardiotoxicity; Exercise; Breast cancer

Figure

  • Fig. 1 Hypothetical trends of cardiovascular health with or without exercise before, during, and after breast cancer therapy. HIIT: high-intensity interval training.


Reference

1. Kang SY, Lee SB, Kim YS, et al. 2021; Breast cancer statistics in Korea, 2018. J Breast Cancer. 24:123–37. DOI: 10.4048/jbc.2021.24.e22. PMID: 33913273. PMCID: PMC8090800.
Article
2. Koczkodaj P, Sulkowska U, Gotlib J, Manczuk M. 2019; Breast cancer mortality trends in Europe among women in perimenopausal and postmenopausal age (45+). Arch Med Sci. 16:146–56. DOI: 10.5114/aoms.2019.85198. PMID: 32051718. PMCID: PMC6963145.
Article
3. Guo F, Kuo YF, Shih YC, Giordano SH, Berenson AB. 2018; Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer. 124:3500–9. DOI: 10.1002/cncr.31638. PMID: 30189117. PMCID: PMC6191354.
Article
4. Montero AJ, Rouzier R, Lluch-Hernandez A, et al. 2004; Long- term survival benefit of anthracycline-containing adjuvant chemotherapy in breast cancer patients with ten or more positive lymph nodes: a multi-institutional retrospective study. Breast Cancer Res Treat. 88(Suppl 1):S61.
5. Zare N, Ghanbari S, Salehi A. 2013; Effects of two chemotherapy regimens, anthracycline-based and CMF, on breast cancer disease free survival in the Eastern Mediterranean Region and Asia: a meta-analysis approach for survival curves. Asian Pac J Cancer Prev. 14:2013–7. DOI: 10.7314/APJCP.2013.14.3.2013. PMID: 23679310.
Article
6. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. 1991; Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 266:1672–7. DOI: 10.1001/jama.1991.03470120074036. PMID: 1886191.
Article
7. Thomas GR, McDonald MA, Day J, et al. 2016; A matched cohort study of patients with end-stage heart failure from anthracycline- induced cardiomyopathy requiring advanced cardiac support. Am J Cardiol. 118:1539–44. DOI: 10.1016/j.amjcard.2016.08.020. PMID: 27639686.
8. Bradshaw PT, Stevens J, Khankari N, Teitelbaum SL, Neugut AI, Gammon MD. 2016; Cardiovascular disease mortality among breast cancer survivors. Epidemiology. 27:6–13. DOI: 10.1097/EDE.0000000000000394. PMID: 26414938. PMCID: PMC4666721.
Article
9. Gernaat SA, Ho PJ, Rijnberg N, et al. 2017; Risk of death from cardiovascular disease following breast cancer in Southeast Asia: a prospective cohort study. Sci Rep. 7:1365. DOI: 10.1038/s41598-017-01540-7. PMID: 28465587. PMCID: PMC5430976.
Article
10. Armenian SH, Xu L, Ky B, et al. 2016; Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol. 34:1122–30. DOI: 10.1200/JCO.2015.64.0409. PMID: 26834065. PMCID: PMC7357493.
Article
11. Lee K, Kruper L, Dieli-Conwright CM, Mortimer JE. 2019; The impact of obesity on breast cancer diagnosis and treatment. Curr Oncol Rep. 21:41. DOI: 10.1007/s11912-019-0787-1. PMID: 30919143. PMCID: PMC6437123.
Article
12. Vaitiekus D, Muckiene G, Vaitiekiene A, et al. 2020; Impact of arterial hypertension on doxorubicin-based chemotherapy- induced subclinical cardiac damage in breast cancer patients. Cardiovasc Toxicol. 20:321–7. DOI: 10.1007/s12012-019-09556-3. PMID: 31782105.
13. Moreno M, Rodriguez C, Lengacher C. 2021; Breast cancer and diabetes mellitus type 2: state of the science. Oncol Nurs Forum. 48:21–22.
14. Wu AH, Kurian AW, Kwan ML, et al. 2015; Diabetes and other comorbidities in breast cancer survival by race/ethnicity: the California Breast Cancer Survivorship Consortium (CBCSC). Cancer Epidemiol Biomarkers Prev. 24:361–8. DOI: 10.1158/1055-9965.EPI-14-1140. PMID: 25425578. PMCID: PMC4523272.
Article
15. Russo G, Cioffi G, Gori S, et al. 2014; Role of hypertension on new onset congestive heart failure in patients receiving trastuzumab therapy for breast cancer. J Cardiovasc Med (Hagerstown). 15:141–6. DOI: 10.2459/JCM.0b013e328365afb5. PMID: 24534802.
Article
16. Courneya KS, Mackey JR, Bell GJ, Jones LW, Field CJ, Fairey AS. 2003; Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol. 21:1660–8. DOI: 10.1200/JCO.2003.04.093. PMID: 12721239.
Article
17. Courneya KS, Segal RJ, Mackey JR, et al. 2007; Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 25:4396–404. DOI: 10.1200/JCO.2006.08.2024. PMID: 17785708.
Article
18. Lee K, Tripathy D, Demark-Wahnefried W, et al. 2019; Effect of aerobic and resistance exercise intervention on cardiovascular disease risk in women with early-stage breast cancer: a randomized clinical trial. JAMA Oncol. 5:710–4. DOI: 10.1001/jamaoncol.2019.0038. PMID: 30920602. PMCID: PMC6512455.
19. Diaz-Balboa E, Gonzalez-Salvado V, Rodriguez-Romero B, et al. 2021; A randomized trial to evaluate the impact of exercise- based cardiac rehabilitation for the prevention of chemotherapy- induced cardiotoxicity in patients with breast cancer: ONCORE study protocol. BMC Cardiovasc Disord. 21:165. DOI: 10.1186/s12872-021-01970-2. PMID: 33827450. PMCID: PMC8025895.
Article
20. Schmitz KH, Troxel AB, Dean LT, et al. 2019; Effect of home-based exercise and weight loss programs on breast cancer-related lymphedema outcomes among overweight breast cancer survivors: the WISER survivor randomized clinical trial. JAMA Oncol. 5:1605–13. DOI: 10.1001/jamaoncol.2019.2109. PMID: 31415063. PMCID: PMC6696732.
21. Leach HJ, Danyluk JM, Nishimura KC, Culos-Reed SN. 2015; Evaluation of a community-based exercise program for breast cancer patients undergoing treatment. Cancer Nurs. 38:417–25. DOI: 10.1097/NCC.0000000000000217. PMID: 25539165.
Article
22. Currie KD, Bailey KJ, Jung ME, McKelvie RS, MacDonald MJ. 2015; Effects of resistance training combined with moderate- intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. J Sci Med Sport. 18:637–42. DOI: 10.1016/j.jsams.2014.09.013. PMID: 25308628.
23. Schmid D, Leitzmann MF. 2014; Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 25:1293–311. DOI: 10.1093/annonc/mdu012. PMID: 24644304.
Article
24. Campbell KL, Winters-Stone KM, Wiskemann J, et al. 2019; Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 51:2375–90. DOI: 10.1249/MSS.0000000000002116. PMID: 31626055.
Article
25. Lee K, Zhou J, Norris MK, Chow C, Dieli-Conwright CM. 2020; Prehabilitative exercise for the enhancement of physical, psychosocial, and biological outcomes among patients diagnosed with cancer. Curr Oncol Rep. 22:71. DOI: 10.1007/s11912-020-00932-9. PMID: 32537699.
Article
26. Brahmbhatt P, Sabiston CM, Lopez C, et al. 2020; Feasibility of prehabilitation prior to breast cancer surgery: a mixed-methods study. Front Oncol. 10:571091. DOI: 10.3389/fonc.2020.571091. PMID: 33072603. PMCID: PMC7544900.
Article
27. Wu F, Laza-Cagigas R, Pagarkar A, Olaoke A, El Gammal M, Rampal T. 2020; Dec. 25. The feasibility of prehabilitation as part of the breast cancer treatment pathway. PM R. [Epub]. https://doi.org/10.1002/pmrj.12543. DOI: 10.1002/pmrj.12543. PMID: 33369236.
Article
28. Yang A, Sokolof J, Gulati A. 2018; The effect of preoperative exercise on upper extremity recovery following breast cancer surgery: a systematic review. Int J Rehabil Res. 41:189–96. DOI: 10.1097/MRR.0000000000000288. PMID: 29683834.
Article
29. Nyrop KA, Deal AM, Choi SK, et al. 2018; Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer. Breast Cancer Res Treat. 168:43–55. DOI: 10.1007/s10549-017-4565-1. PMID: 29124455.
Article
30. Vincent F, Labourey JL, Leobon S, et al. 2011; Feasibility of home-adapted aerobic exercise training on peak oxygen consumption and fatigue in breast cancer patients during adjuvant chemotherapy. Eur J Cancer. 47:S387. DOI: 10.1016/S0959-8049(11)71632-X.
31. Lee K, Kang I, Mack WJ, et al. 2019; Feasibility of high intensity interval training in patients with breast cancer undergoing anthracycline chemotherapy: a randomized pilot trial. BMC Cancer. 19:653. DOI: 10.1186/s12885-019-5887-7. PMID: 31269914. PMCID: PMC6610838.
Article
32. MacVicar MG, Winningham ML, Nickel JL. 1989; Effects of aerobic interval training on cancer patients' functional capacity. Nurs Res. 38:348–51. DOI: 10.1097/00006199-198911000-00007. PMID: 2587289.
Article
33. Segal R, Evans W, Johnson D, et al. 2001; Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial. J Clin Oncol. 19:657–65. DOI: 10.1200/JCO.2001.19.3.657. PMID: 11157015.
Article
34. Jones LW, Fels DR, West M, et al. 2013; Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res (Phila). 6:925–37. DOI: 10.1158/1940-6207.CAPR-12-0416. PMID: 23842792. PMCID: PMC3800005.
Article
35. Travier N, Velthuis MJ, Steins Bisschop CN, et al. 2015; Effects of an 18-week exercise programme started early during breast cancer treatment: a randomised controlled trial. BMC Med. 13:121. DOI: 10.1186/s12916-015-0362-z. PMID: 26050790. PMCID: PMC4461906.
Article
36. Hojan K, Procyk D, Horynska-Kestowicz D, Leporowska E, Litwiniuk M. 2020; The preventive role of regular physical training in ventricular remodeling, serum cardiac markers, and exercise performance changes in breast cancer in women undergoing trastuzumab therapy: an REH-HER study. J Clin Med. 9:1379. DOI: 10.3390/jcm9051379. PMID: 32392882. PMCID: PMC7291322.
37. Mijwel S, Backman M, Bolam KA, et al. 2018; Highly favorable physiological responses to concurrent resistance and high- intensity interval training during chemotherapy: the OptiTrain breast cancer trial. Breast Cancer Res Treat. 169:93–103. DOI: 10.1007/s10549-018-4663-8. PMID: 29349712. PMCID: PMC5882634.
38. Schulz SV, Laszlo R, Otto S, et al. 2018; Feasibility and effects of a combined adjuvant high-intensity interval/strength training in breast cancer patients: a single-center pilot study. Disabil Rehabil. 40:1501–8. DOI: 10.1080/09638288.2017.1300688. PMID: 28325109.
Article
39. Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R. 2007; Effects of supervised exercise training on cardiopulmonary function and fatigue in breast cancer survivors during and after treatment. Cancer. 110:918–25. DOI: 10.1002/cncr.22862. PMID: 17582616.
Article
40. Knobf MT, Fennie K, Avila D, et al. 2006; The effect of an exercise intervention on QOL and symptoms in breast cancer survivors. Oncol Nurs Forum. 33:463.
41. Wagoner CW, Lee JT, Sullivan SA, et al. 2019; Community-based exercise improves cancer-related fatigue and physical fitness in breast cancer survivors: a preliminary analysis. Med Sci Sports Exerc. 51:880. DOI: 10.1249/01.mss.0000563128.92549.d6.
Article
42. Milne HM, Wallman KE, Gordon S, Courneya KS. 2008; Effects of a combined aerobic and resistance exercise program in breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat. 108:279–88. DOI: 10.1007/s10549-007-9602-z. PMID: 17530428.
Article
43. Kemble K, Burnham TR. 2006; Aerobic exercise decreases depression and anxiety in breast cancer survivors. Med Sci Sports Exerc. 38:S422. DOI: 10.1249/00005768-200605001-02650.
Article
44. Zvinovski F, Stephens JA, Ramaswamy B, et al. 2021; A cardiac rehabilitation program for breast cancer survivors: a feasibility study. J Oncol. 2021:9965583. DOI: 10.1155/2021/9965583. PMID: 34135964. PMCID: PMC8178006.
Article
45. Toohey K, Pumpa K, McKune A, et al. 2020; The impact of high-intensity interval training exercise on breast cancer survivors: a pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC Cancer. 20:787. DOI: 10.1186/s12885-020-07295-1. PMID: 32819304. PMCID: PMC7441660.
Article
46. Fung E, Ting Lui L, Gustafsson F, et al. 2020; Mar. 31. Predicting 10-year mortality in older adults using VO2max, oxygen uptake efficiency slope and frailty class. Eur J Prev Cardiol. [Epub]. https://doi.org/10.1177/2047487320914435. DOI: 10.1177/2047487320914435. PMID: 32228056.
Article
47. Brawner CA, Shafiq A, Aldred HA, et al. 2015; Comprehensive analysis of cardiopulmonary exercise testing and mortality in patients with systolic heart failure: the Henry Ford Hospital cardiopulmonary exercise testing (FIT-CPX) project. J Card Fail. 21:710–8. DOI: 10.1016/j.cardfail.2015.06.001. PMID: 26067685.
Article
48. Inuzuka R, Diller GP, Borgia F, et al. 2012; Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 125:250–9. DOI: 10.1161/CIRCULATIONAHA.111.058719. PMID: 22147905.
Article
49. Jones LW, Courneya KS, Mackey JR, et al. 2012; Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol. 30:2530–7. DOI: 10.1200/JCO.2011.39.9014. PMID: 22614980. PMCID: PMC3397786.
Article
50. deJong A. 2011; Cardiopulmonary exercise testing current applications and future clinical potential. ACSMs Health Fit J. 15(2):43–45. DOI: 10.1249/FIT.0b013e31820b7470.
51. Albouaini K, Egred M, Alahmar A, Wright DJ. 2007; Cardiopulmonary exercise testing and its application. Heart. 93:1285–92. DOI: 10.1136/hrt.2007.121558. PMID: 17989266. PMCID: PMC2734442.
Article
52. Schneider J, Schluter K, Wiskemann J, Rosenberger F. 2020; Do we underestimate maximal oxygen uptake in cancer survivors?: findings from a supramaximal verification test. Appl Physiol Nutr Metab. 45:486–92. DOI: 10.1139/apnm-2019-0560. PMID: 31604021.
Article
53. Keteyian SJ, Patel M, Kraus WE, et al. 2016; Variables measured during cardiopulmonary exercise testing as predictors of mortality in chronic systolic heart failure. J Am Coll Cardiol. 67:780–9. DOI: 10.1016/j.jacc.2015.11.050. PMID: 26892413. PMCID: PMC4761107.
Article
54. Balady GJ, Arena R, Sietsema K, et al. 2010; Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 122:191–225. DOI: 10.1161/CIR.0b013e3181e52e69. PMID: 20585013.
55. Reed JL, Cotie LM, Cole CA, et al. 2020; Submaximal exercise testing in cardiovascular rehabilitation settings (BEST Study). Front Physiol. 10:1517. DOI: 10.3389/fphys.2019.01517. PMID: 31969825. PMCID: PMC6960105.
Article
56. Tan TC, Scherrer-Crosbie M. 2012; Assessing the cardiac toxicity of chemotherapeutic agents: role of echocardiography. Curr Cardiovasc Imaging Rep. 5:403–9. DOI: 10.1007/s12410-012-9163-3. PMID: 23227272. PMCID: PMC3513935.
Article
57. Ganame J, Claus P, Uyttebroeck A, et al. 2007; Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr. 20:1351–8. DOI: 10.1016/j.echo.2007.04.007. PMID: 17604960.
Article
58. Jurcut R, Wildiers H, Ganame J, D'hooge J, Paridaens R, Voigt JU. 2008; Detection and monitoring of cardiotoxicity: what does modern cardiology offer? Support Care Cancer. 16:437–45. DOI: 10.1007/s00520-007-0397-6. PMID: 18197426.
59. Lipshultz SE, Lipsitz SR, Sallan SE, et al. 2005; Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 23:2629–36. DOI: 10.1200/JCO.2005.12.121. PMID: 15837978.
Article
60. Arciniegas Calle MC, Sandhu NP, Xia H, et al. 2018; Two- dimensional speckle tracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline- trastuzumab chemotherapy in patients with breast cancer. BMC Cancer. 18:1037. DOI: 10.1186/s12885-018-4935-z. PMID: 30359235. PMCID: PMC6203211.
Article
61. Harrington JK, Richmond ME, Fein AW, Kobsa S, Satwani P, Shah A. 2018; Two-dimensional speckle tracking echocardiography- derived strain measurements in survivors of childhood cancer on angiotensin converting enzyme inhibition or receptor blockade. Pediatr Cardiol. 39:1404–12. DOI: 10.1007/s00246-018-1910-z. PMID: 29789916.
62. Geyer H, Caracciolo G, Abe H, et al. 2010; Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 23:351–69. DOI: 10.1016/j.echo.2010.02.015. PMID: 20362924.
Article
63. Sawaya H, Sebag IA, Plana JC, et al. 2012; Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 5:596–603. DOI: 10.1161/CIRCIMAGING.112.973321. PMID: 22744937. PMCID: PMC3703313.
Article
64. Sawaya H, Sebag IA, Plana JC, et al. 2011; Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 107:1375–80. DOI: 10.1016/j.amjcard.2011.01.006. PMID: 21371685. PMCID: PMC3703314.
Article
65. Fallah-Rad N, Walker JR, Wassef A, et al. 2011; The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 57:2263–70. DOI: 10.1016/j.jacc.2010.11.063. PMID: 21616287.
Article
66. Armstrong GT, Plana JC, Zhang N, et al. 2012; Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 30:2876–84. DOI: 10.1200/JCO.2011.40.3584. PMID: 22802310. PMCID: PMC3671529.
Article
67. Donekal S, Ambale-Venkatesh B, Berkowitz S, et al. 2013; Inter- study reproducibility of cardiovascular magnetic resonance tagging. J Cardiovasc Magn Reson. 15:37. DOI: 10.1186/1532-429X-15-37. PMID: 23663535. PMCID: PMC3667053.
Article
68. Tumkosit M, Detphirattanamongkhol J, Kuadwongsa A, Srimahachota S, Kitsukjit W, Wangsuphachart S. 2011; Left ventricular ejection fraction measurement using cardiovascular magnetic resonance imaging in patients with post-myocardial infarction: assessment of reproducibility by a cardiovascular radiologist and a trained technologist. Asian Biomed. 5:543–8. DOI: 10.5372/1905-7415.0504.072.
69. Neilan TG, Coelho-Filho OR, Shah RV, et al. 2013; Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 111:717–22. DOI: 10.1016/j.amjcard.2012.11.022. PMID: 23228924. PMCID: PMC3578020.
Article
70. Barthur A, Brezden-Masley C, Connelly KA, et al. 2017; Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. J Cardiovasc Magn Reson. 19:44. DOI: 10.1186/s12968-017-0356-4. PMID: 28395671. PMCID: PMC5387372.
Article
71. Lunning MA, Kutty S, Rome ET, et al. 2015; Cardiac magnetic resonance imaging for the assessment of the myocardium after doxorubicin-based chemotherapy. Am J Clin Oncol. 38:377–81. DOI: 10.1097/COC.0b013e31829e19be. PMID: 24192805.
Article
72. Plana JC, Galderisi M, Barac A, et al. 2014; Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 15:1063–93. DOI: 10.1093/ehjci/jeu192. PMID: 25239940. PMCID: PMC4402366.
Article
73. Monge García MI, Santos A. 2020; Understanding ventriculo-arterial coupling. Ann Transl Med. 8:795. DOI: 10.21037/atm.2020.04.10. PMID: 32647720. PMCID: PMC7333110.
Article
74. Nebigil CG, Desaubry L. 2018; Updates in anthracycline-mediated cardiotoxicity. Front Pharmacol. 9:1262. DOI: 10.3389/fphar.2018.01262. PMID: 30483123. PMCID: PMC6240592.
Article
75. Sala V, Della Sala A, Hirsch E, Ghigo A. 2020; Signaling pathways underlying anthracycline cardiotoxicity. Antioxid Redox Signal. 32:1098–114. DOI: 10.1089/ars.2020.8019. PMID: 31989842.
Article
76. Chaosuwannakit N, D'Agostino R Jr, Hamilton CA, et al. 2010; Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 28:166–72. DOI: 10.1200/JCO.2009.23.8527. PMID: 19901105. PMCID: PMC2799231.
Article
77. Yersal O, Eryilmaz U, Akdam H, Meydan N, Barutca S. 2018; Arterial stiffness in breast cancer patients treated with anthracycline and trastuzumab-based regimens. Cardiol Res Pract. 2018:5352914. DOI: 10.1155/2018/5352914. PMID: 29854434. PMCID: PMC5954934.
Article
78. Souza CA, Simoes R, Borges KB, et al. 2018; Arterial stiffness use for early monitoring of cardiovascular adverse events due to anthracycline chemotherapy in breast cancer patients: a pilot study. Arq Bras Cardiol. 111:721–8. DOI: 10.5935/abc.20180168. PMID: 30281690. PMCID: PMC6248238.
79. Chung GE, Park HE, Lee H, Choi SY. 2021; Clinical significance of increased arterial stiffness associated with atrial fibrillation, according to Framingham risk score. Sci Rep. 11:4955. DOI: 10.1038/s41598-021-84311-9. PMID: 33654162. PMCID: PMC7925576.
Article
80. Chen Y, Shen F, Liu J, Yang GY. 2017; Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol. 2:65–72. DOI: 10.1136/svn-2016-000045. PMID: 28959494. PMCID: PMC5600012.
Article
81. Van Bortel LM, De Backer T, Segers P. 2016; Standardization of arterial stiffness measurements make them ready for use in clinical practice. Am J Hypertens. 29:1234–6. DOI: 10.1093/ajh/hpw084. PMID: 27496167.
82. Flore R, Ponziani FR, Tinelli G, et al. 2015; New modalities of ultrasound-based intima-media thickness, arterial stiffness and non-coronary vascular calcifications detection to assess cardiovascular risk. Eur Rev Med Pharmacol Sci. 19:1430–41. PMID: 25967718.
83. Swisher AK, Abraham J, Bonner D, et al. 2015; Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile. Support Care Cancer. 23:2995–3003. DOI: 10.1007/s00520-015-2667-z. PMID: 25724409. PMCID: PMC4624214.
Article
84. Capozzi LC, Nishimura KC, McNeely ML, Lau H, Culos- Reed SN. 2016; The impact of physical activity on health-related fitness and quality of life for patients with head and neck cancer: a systematic review. Br J Sports Med. 50:325–38. DOI: 10.1136/bjsports-2015-094684. PMID: 25966911.
Article
Full Text Links
  • KJSM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr