Neurointervention.  2021 Jul;16(2):117-121. 10.5469/neuroint.2021.00024.

Prevalence of Unruptured Intracranial Aneurysms: A Single Center Experience Using 3T Brain MR Angiography

Affiliations
  • 1Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
  • 2Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
  • 3Department of Neurosurgery, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea
  • 4Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

Abstract

Purpose
The purpose of this study was to evaluate the prevalence and risk factors of unruptured intracranial aneurysms (UIAs), which can help establish guidelines of treatment for asymptomatic Korean adults using 3T magnetic resonance angiography (MRA).
Materials and Methods
Our Institutional Review Board approved this retrospective study, and informed consent was waived. All patients consisted of healthy individuals who underwent brain MRA using 3T magnetic resonance imaging between January 2011 and December 2012 as part of a routine health examination. Patient data and follow-up results were obtained from medical records.
Results
A total of 2,118 individuals (mean age=53.9±9.6 years, male:female=1,188:930) who had undergone brain MRA were enrolled in the study. UIAs were found in 80 patients with 105 UIAs (3.77%). Female predominance (55% in UIA vs. 43.47% in non-UIA, P=0.0416) and hypertension were more common in the UIA group (43.75% vs. 28.8%, P=0.004, respectively). The mean size of the aneurysms was 3.10±1.62 mm, and they were all saccular in shape and asymptomatic. The UIAs were most common in the internal carotid artery (59.1%), internal carotid-posterior communicating artery (15.2%), middle cerebral artery (9.5%), anterior communicating artery (8.6%), anterior cerebral artery (4.8%), and vertebral artery (2.9%). Twenty-eight of 80 patients (35%) had multiple aneurysms. The incidence of UIAs increased significantly with age (P=0.014).
Conclusion
In single center experience, we demonstrated the characteristics and prevalence of UIAs in asymptomatic adults, which may help establish guidelines or therapeutic standards for UIAs.

Keyword

Intracranial aneurysm; Magnetic resonance angiography; Cross-sectional study; Prevalence

Cited by  1 articles

Unruptured Intracranial Aneurysm: Screening, Prevalence and Risk Factors
Bum-soo Kim
Neurointervention. 2021;16(3):201-203.    doi: 10.5469/neuroint.2021.00451.


Reference

1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011; 10:626–636.
Article
2. Thompson BG, Brown RD Jr, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ES Jr, American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention; American Heart Association; American Stroke Association, et al. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015; 46:2368–2400.
3. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005; 366:809–817.
Article
4. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002; 360:1267–1274.
Article
5. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, International Study of Unruptured Intracranial Aneurysms Investigators, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003; 362:103–110.
Article
6. UCAS Japan Investigators, Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012; 366:2474–2482.
7. Jeon TY, Jeon P, Kim KH. Prevalence of unruptured intracranial aneurysm on MR angiography. Korean J Radiol. 2011; 12:547–553.
Article
8. Park S, Lee DH, Ryu CW, Pyun HW, Choi CG, Kim SJ, et al. Incidental saccular aneurysms on head MR angiography: 5 years’ experience at a single large-volume center. J Stroke. 2014; 16:189–194.
Article
9. Iwamoto H, Kiyohara Y, Fujishima M, Kato I, Nakayama K, Sueishi K, et al. Prevalence of intracranial saccular aneurysms in a Japanese community based on a consecutive autopsy series during a 30-year observation period. The Hisayama study. Stroke. 1999; 30:1390–1395.
10. Ujiie H, Sato K, Onda H, Oikawa A, Kagawa M, Takakura K, et al. Clinical analysis of incidentally discovered unruptured aneurysms. Stroke. 1993; 24:1850–1856.
Article
11. Li MH, Chen SW, Li YD, Chen YC, Cheng YS, Hu DJ, et al. Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: a cross-sectional study. Ann Intern Med. 2013; 159:514–521.
12. Imaizumi Y, Mizutani T, Shimizu K, Sato Y, Taguchi J. Detection rates and sites of unruptured intracranial aneurysms according to sex and age: an analysis of MR angiography-based brain examinations of 4070 healthy Japanese adults. J Neurosurg. 2018; 130:573–578.
Article
13. Harada K, Fukuyama K, Shirouzu T, Ichinose M, Fujimura H, Kakumoto K, et al. Prevalence of unruptured intracranial aneurysms in healthy asymptomatic Japanese adults: differences in gender and age. Acta Neurochir (Wien). 2013; 155:2037–2043.
Article
14. Ishibashi T, Murayama Y, Urashima M, Saguchi T, Ebara M, Arakawa H, et al. Unruptured intracranial aneurysms: incidence of rupture and risk factors. Stroke. 2009; 40:313–316.
15. Wermer MJ, van der Schaaf IC, Algra A, Rinkel GJ. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke. 2007; 38:1404–1410.
16. Sonobe M, Yamazaki T, Yonekura M, Kikuchi H. Small unruptured intracranial aneurysm verification study: SUAVe study, Japan. Stroke. 2010; 41:1969–1977.
17. Matsumoto K, Oshino S, Sasaki M, Tsuruzono K, Taketsuna S, Yoshimine T. Incidence of growth and rupture of unruptured intracranial aneurysms followed by serial MRA. Acta Neurochir (Wien). 2013; 155:211–216.
Article
Full Text Links
  • NI
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr