Anat Cell Biol.  2021 Jun;54(2):212-224. 10.5115/acb.20.215.

Alterations of Kiss 1 receptor, GnRH receptor and nuclear receptors of the hypothalamopituitary-ovarian axis following low dose bisphenol-A exposure in Wistar rats

Affiliations
  • 1Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
  • 2Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, QC, Canada

Abstract

Bisphenol A is a chemical used primarily as a monomer in the production of polycarbonate plastics and epoxy resins. It is a synthetic chemical compound that is produced in billions of pounds annually, and tagged as an endocrine disruptor. Bisphenol A is a high production synthetic chemical compound that is used in the production of many consumables and equipments of daily consumption and use by man. Growing interest in possible health threats posed by endocrine disrupting chemicals (bisphenol-A inclusive), as these substances are in our environment, food, and many consumer products. Therefore, this study aims to determine bisphenol-A effects on the hypothalamo-pituitary-ovarian axis, and role of melatonin in this regard. Forty-two Wistar rats were bred, grouped into 7, with each group consisting of 6 rats. Experimental groups were administered low and high doses of bisphenol-A and melatonin, starting from day 19, and was continued for 7 weeks orally. They were left to develop into full adults and were sacrificed on day 120±4 days. Blood samples, hypothalamus, pituitary and ovarian tissues were excised for biochemical and tissue antioxidants assays as well as genetic studies. Results show elevated gonadotropin and androgen levels. There was disruption of reactive oxygen species in the ovarian tissues, as well as alterations in the expression of genes that regulate reproduction at the hypothalamus and pituitary levels. Conclusion of early exposure to bisphenol-A is associated with prolonged duration of disruption of reproductive functions in female Wistar rats, which persist long after cessation of the exposure. Melatonin antioxidant effects give some promising outturns against bisphenol-A induced toxicities.

Keyword

Bisphenol A; Endocrine disruptors; Reproduction; Hypothalamo-pituitary-ovarian axis; Melatonin

Figure

  • Fig. 1 Showing the plasma levels of anti-mullerian hormone (AMH) (A), follicle stimulating hormone (FSH) (B), luteinizing hormone (LH) (C), progesterone (D), estradiol (E), and testosterone (F) following prenatal exposures to normal saline (NS), vehicle control (VC), 10 mg/kg melatonin (MEL), 25 mg/kg bisphenol-A (BPA) (LBP-A), 25 mg/kg BPA+10 mg/kg melatonin (LBP-A+MEL), 50 mg/kg BPA (HBP-A) and 50 mg/kg BPA+10 mg/kg melatonin (HBP-A+MEL). Values are presented as mean±standard error of mean. Asterisk indicates significant increase from all or specific groups (*P<0.05).

  • Fig. 2 Showing the ovarian levels of (A) superoxide dismutase (SOD), (B) nitric oxide synthase (NOS), (C) glutathione peroxidase (GPx), and (D) uridine 5’-diphospho (UDP) following exposures to normal saline (NS), vehicle control (VC), 10 mg/kg melatonin (MEL), 25 mg/kg bisphenol-A (BPA) (LBP-A), 25 mg/kg BPA+10 mg/kg melatonin (LBP-A+MEL), 50 mg/kg BPA (HBP-A), and 50 mg/kg BPA+10 mg/kg melatonin (HBP-A+MEL). Values are presented as mean±standard error of mean. Asterisks indicate significant differences at *P<0.05, **P<0.01, and ***P<0.001, respectively from all or specific groups.

  • Fig. 3 Showing the expression of Kiss 1 (A), GnRH mRNA (B), GnRH receptor (GnRHr) (C), estrogen receptor (EsR) (D), androgen receptor (AR) (E), and anti-mullerian hormone (AMH) (F) following exposures to normal saline (NS), vehicle control (VC), 10 mg/kg melatonin (MEL), 25 mg/kg bisphenol-A (BPA) (LBP-A), 25 mg/kg BPA+10 mg/kg melatonin (LBP-A+MEL), 50 mg/kg BPA (HBP-A), and 50 mg/kg BPA+10 mg/kg melatonin (HBP-A+MEL). Values are presented as mean±standard error of mean. Asterisks indicate significant differences at *P<0.05, **P<0.01, and ***P<0.001, respectively from all or specific groups.

  • Fig. 4 Showing (A) representative photomicrographs of the ovaries (H&E, ×40) and (B) follicular count following prenatal exposures to normal saline (NS), vehicle control (VC), 10 mg/kg melatonin (MEL), 25 mg/kg bisphenol-A (BPA) (LBP-A), 25 mg/kg BPA+10 mg/kg melatonin (LBP-A+MEL), 50 mg/kg BPA (HBP-A), and 50 mg/kg BPA+10 mg/kg melatonin (HBP-A+MEL). Values are presented as mean±standard error of mean. *Significant decrease from the control; aSignificant decrease from the vehicle control group. CL, corpus luteum; CTR, control.

  • Fig. 5 Showing the (A) ovarian histoarchitecture (H&E, ×100) and (B) follicle count in adolescent rats exposed to normal saline (NS) is the control group (CTR), vehicle control (VC), 10 mg/kg melatonin (MEL), 25 mg/kg bisphenol-A (BPA), 25 mg/kg BPA+MEL, 50 mg/kg BPA, and 50 mg/kg BPA+MEL. AF, antral follicles; AT, atretic follicles; CL, corpus luteum; FD, follicular degeneration; PA, preantral; PF, primary follicle.


Reference

References

1. Geens T, Apelbaum TZ, Goeyens L, Neels H, Covaci A. 2010; Intake of bisphenol A from canned beverages and foods on the Belgian market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 27:1627–37. DOI: 10.1080/19440049.2010.508183. PMID: 20835936.
Article
2. Adeyi AA, Babalola BA. 2019; Bisphenol-A (BPA) in foods commonly consumed in Southwest Nigeria and its human health risk. Sci Rep. 9:17458. DOI: 10.1038/s41598-019-53790-2. PMID: 31767906. PMCID: PMC6877615.
Article
3. vom Saal FS, Hughes C. 2005; An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect. 113:926–33. DOI: 10.1289/ehp.7713. PMID: 16079060. PMCID: PMC1280330.
Article
4. Schug TT, Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. 2013; PPTOX III: environmental stressors in the developmental origins of disease--evidence and mechanisms. Toxicol Sci. 131:343–50. DOI: 10.1093/toxsci/kfs267. PMID: 22956631. PMCID: PMC3551422.
Article
5. Kamel AH, Foaud MA, Moussa HM. 2018; The adverse effects of bisphenol A on male albino rats. J Basic Appl Zool. 79:6. DOI: 10.1186/s41936-018-0015-9.
Article
6. Bae S, Kim JH, Lim YH, Park HY, Hong YC. 2012; Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension. 60:786–93. DOI: 10.1161/HYPERTENSIONAHA.112.197715. PMID: 22851732.
Article
7. Melzer D, Osborne NJ, Henley WE, Cipelli R, Young A, Money C, McCormack P, Luben R, Khaw KT, Wareham NJ, Galloway TS. 2012; Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation. 125:1482–90. DOI: 10.1161/CIRCULATIONAHA.111.069153. PMID: 22354940.
Article
8. Shankar A, Teppala S, Sabanayagam C. 2012; Urinary bisphenol a levels and measures of obesity: results from the national health and nutrition examination survey 2003-2008. ISRN Endocrinol. 2012:965243. DOI: 10.5402/2012/965243. PMID: 22852093. PMCID: PMC3407638.
Article
9. Chevrier J, Gunier RB, Bradman A, Holland NT, Calafat AM, Eskenazi B, Harley KG. 2013; Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect. 121:138–44. DOI: 10.1289/ehp.1205092. PMID: 23052180. PMCID: PMC3553432.
Article
10. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O. 2001; Bisphenol A in hazardous waste landfill leachates. Chemosphere. 42:415–8. DOI: 10.1016/S0045-6535(00)00079-5. PMID: 11100793.
Article
11. Schwarzbauer J, Heim S, Brinker S, Littke R. 2002; Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res. 36:2275–87. DOI: 10.1016/S0043-1354(01)00452-3. PMID: 12108720.
Article
12. Lunardi D, Abelli L, Panti C, Marsili L, Fossi MC, Mancia A. 2016; Transcriptomic analysis of bottlenose dolphin (Tursiops truncatus) skin biopsies to assess the effects of emerging contaminants. Mar Environ Res. 114:74–9. DOI: 10.1016/j.marenvres.2016.01.002. PMID: 26794494.
Article
13. Berhane TM, Levy J, Krekeler MPS, Danielson ND. 2017; Kinetic sorption of contaminants of emerging concern by a palygorskite-montmorillonite filter medium. Chemosphere. 176:231–42. DOI: 10.1016/j.chemosphere.2017.02.068. PMID: 28273530.
Article
14. Xiao C, Wang L, Zhou Q, Huang X. 2020; Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies. J Hazard Mater. 384:121488. DOI: 10.1016/j.jhazmat.2019.121488. PMID: 31699483.
Article
15. Liang H, Xu W, Chen J, Shi H, Zhu J, Liu X, Wang J, Miao M, Yuan W. 2017; The association between exposure to environmental bisphenol A and gonadotropic hormone levels among men. PLoS One. 12:e0169217. DOI: 10.1371/journal.pone.0169217. PMID: 28085949. PMCID: PMC5234835.
Article
16. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. 2002; Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 15:1281–7. DOI: 10.1021/tx025548t. PMID: 12387626.
Article
17. Jones BA, Watson NV. 2012; Perinatal BPA exposure demasculinizes males in measures of affect but has no effect on water maze learning in adulthood. Horm Behav. 61:605–10. DOI: 10.1016/j.yhbeh.2012.02.011. PMID: 22370244.
Article
18. Palanza P, Gioiosa L, vom Saal FS, Parmigiani S. 2008; Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res. 108:150–7. DOI: 10.1016/j.envres.2008.07.023. PMID: 18949834.
Article
19. Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, Wang S. 2012; Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect. 120:1190–4. DOI: 10.1289/ehp.1104492. PMID: 22543054. PMCID: PMC3440080.
Article
20. Almeida S, Raposo A, Almeida-González M, Carrascosa C. 2018; Bisphenol A: food exposure and impact on human health. Compr Rev Food Sci Food Saf. 17:1503–17. DOI: 10.1111/1541-4337.12388. PMID: 33350146.
Article
21. Sharma M, Sharma R, Gupta P, ivastava S Sr. 2019; Bisphenol- A induced oxidative stress and its fertility aspects. Int J Pharm Sci Res. 10:3519–31.
22. Gassman NR. 2017; Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen. 58:60–71. DOI: 10.1002/em.22072. PMID: 28181297. PMCID: PMC5458620.
Article
23. Haroun MR, Zamzam IS, Metwally ES, EL-Shafey RS. 2016; Effect of vitamin C on bisphenol A induced hepato& nephrotoxicity in albino rats. Egypt J Forensic Sci Appli Toxicol. 16(Suppl):57–85. DOI: 10.21608/ejfsat.2016.41639.
24. Elwakeel SHB, El-Monem DDA. 2018; Ameliorative effect of melatonin and quercetin against bisphenol A induced reproductive toxicity in male albino mice. Cienc Tec Vitivinic. 33:31–64.
25. Olukole SG, Ola-Davies EO, Lanipekun DO, Oke BO. 2020; Chronic exposure of adult male Wistar rats to bisphenol A causes testicular oxidative stress: role of gallic acid. Endocr Regul. 54:14–21. DOI: 10.2478/enr-2020-0003. PMID: 32597147.
Article
26. Mohamad Zaid SS, Kassim NM, Othman S. 2015; Tualang honey protects against BPA-induced morphological abnormalities and disruption of ERα, ERβ, and C3 mRNA and protein expressions in the uterus of rats. Evid Based Complement Alternat Med. 2015:202874. DOI: 10.1155/2015/202874. PMID: 26788107. PMCID: PMC4691614.
Article
27. Ullah A, Pirzada M, Jahan S, Ullah H, Khan MJ. 2019; Bisphenol A analogues bisphenol B, bisphenol F, and bisphenol S induce oxidative stress, disrupt daily sperm production, and damage DNA in rat spermatozoa: a comparative in vitro and in vivo study. Toxicol Ind Health. 35:294–303. DOI: 10.1177/0748233719831528. PMID: 30871434.
28. Kaur S, Singh G, Sadwal S, Aniqa A. 2020; Alleviating impact of hydroethanolic Murraya koenigii leaves extract on bisphenol A instigated testicular lethality and apoptosis in mice. Andrologia. 52:e13504. DOI: 10.1111/and.13504. PMID: 31912924.
Article
29. Ma S, Li R, Gong X, Shi W, Zhong X. 2018; Lycopene reduces in utero bisphenol A exposure-induced mortality, benefits hormones, and development of reproductive organs in offspring mice. Environ Sci Pollut Res Int. 25:24041–51. DOI: 10.1007/s11356-018-2395-2. PMID: 29948678.
Article
30. El Morsy EM, Ahmed M. 2020; Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats. Hum Exp Toxicol. 39:1066–78. DOI: 10.1177/0960327120909882. PMID: 32153214.
Article
31. Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA. 2020; Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. Environ Sci Pollut Res Int. 27:9192–201. DOI: 10.1007/s11356-019-07509-5. PMID: 31916151.
Article
32. Anjum S, Rahman S, Kaur M, Ahmad F, Rashid H, Ansari RA, Raisuddin S. 2011; Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol. 49:2849–54. DOI: 10.1016/j.fct.2011.07.062. PMID: 21840368.
Article
33. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. 2016; Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 61:253–78. DOI: 10.1111/jpi.12360. PMID: 27500468.
Article
34. Wu HJ, Liu C, Duan WX, Xu SC, He MD, Chen CH, Wang Y, Zhou Z, Yu ZP, Zhang L, Chen Y. 2013; Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats. Mutat Res. 752:57–67. DOI: 10.1016/j.mrgentox.2013.01.005. PMID: 23402883.
Article
35. FAO/WHO. 2011. In : Toxicological and Health Aspects of Bisphenol A Report of Joint FAO/WHO Expert Meeting; 2010 Nov 2-5; Ottawa, Canada. WHO;Geneva: p. 60.
36. Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. 2014; Bisphenol A and reproductive health: update of experimental and human evidence, 2007-2013. Environ Health Perspect. 122:775–86. DOI: 10.1289/ehp.1307728. PMID: 24896072. PMCID: PMC4123031.
Article
37. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS. 2007; In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 24:199–224. DOI: 10.1016/j.reprotox.2007.06.004. PMID: 17683900. PMCID: PMC2151845.
Article
38. Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS, Saili KS, Soto AM, Wang HS, vom Saal FS. 2013; Low dose effects of bisphenol A: an integrated review of in vitro, laboratory animal, and epidemiology studies. Endocr Disrupt. 1:e26490. DOI: 10.4161/endo.26490.
39. vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, Farabollini F, Guillette LJ Jr, Hauser R, Heindel JJ, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Keri RA, Knudsen KE, Laufer H, LeBlanc GA, Marcus M, McLachlan JA, Myers JP, Nadal A, Newbold RR, Olea N, Prins GS, Richter CA, Rubin BS, Sonnenschein C, Soto AM, Talsness CE, Vandenbergh JG, Vandenberg LN, Walser-Kuntz DR, Watson CS, Welshons WV, Wetherill Y, Zoeller RT. 2007; Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 24:131–8. DOI: 10.1016/j.reprotox.2007.07.005. PMID: 17768031. PMCID: PMC2967230.
Article
40. Helal EGE, Mohamed AM, Taha NM. 2016; Effect of bisphenol A on the first generation of female rats from both parents treated with the same xenoestrogen. Egypt J Hosp Med. 64:389–94. DOI: 10.12816/0029030.
Article
41. Pivonello C, Muscogiuri G, Nardone A, Garifalos F, Provvisiero DP, Verde N, de Angelis C, Conforti A, Piscopo M, Auriemma RS, Colao A, Pivonello R. 2020; Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol. 18:22. DOI: 10.1186/s12958-019-0558-8. PMID: 32171313. PMCID: PMC7071611.
Article
42. Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, Money C, McCormack P, Melzer D. 2010; Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect. 118:1603–8. DOI: 10.1289/ehp.1002367. PMID: 20797929. PMCID: PMC2974700.
Article
43. Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Joensen UN, Main KM, Skakkebaek NE, Juul A, Jørgensen N, Andersson AM. 2014; Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality. Environ Health Perspect. 122:478–84. DOI: 10.1289/ehp.1307309. PMID: 24786630. PMCID: PMC4014766.
Article
44. Anderson RA, Lincoln GA, Wu FC. 1993; Melatonin potentiates testosterone-induced suppression of luteinizing hormone secretion in normal men. Hum Reprod. 8:1819–22. DOI: 10.1093/oxfordjournals.humrep.a137940. PMID: 8288743.
45. Grasselli F, Baratta L, Baioni L, Bussolati S, Ramoni R, Grolli S, Basini G. 2010; Bisphenol A disrupts granulosa cell function. Domest Anim Endocrinol. 39:34–9. DOI: 10.1016/j.domaniend.2010.01.004. PMID: 20172683.
Article
46. Venugopal SP. 2019; Effect of melatonin on the onset of puberty in male juvenile rats. Anat Cell Biol. 52:286–95. DOI: 10.5115/acb.18.122. PMID: 31598358. PMCID: PMC6773899.
Article
47. Meczekalski B, Czyzyk A, Kunicki M, Podfigurna-Stopa A, Plociennik L, Jakiel G, Maciejewska-Jeske M, Lukaszuk K. 2016; Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol Invest. 39:1259–65. DOI: 10.1007/s40618-016-0497-6. PMID: 27300031. PMCID: PMC5069312.
Article
48. Wang Z, Liu H, Liu S. 2016; Low-dose bisphenol A exposure: a seemingly instigating carcinogenic effect on breast cancer. Adv Sci (Weinh). 4:1600248. DOI: 10.1002/advs.201600248. PMID: 28251049. PMCID: PMC5323866.
Article
49. Leem YH, Oh S, Kang HJ, Kim JH, Yoon J, Chang JS. 2017; BPA-toxicity via superoxide anion overload and a deficit in β-catenin signaling in human bone mesenchymal stem cells. Environ Toxicol. 32:344–52. DOI: 10.1002/tox.22239. PMID: 26822619. PMCID: PMC5217073.
Article
50. Khan S, Beigh S, Chaudhari BP, Sharma S, Aliul Hasan Abdi S, Ahmad S, Ahmad F, Parvez S, Raisuddin S. 2016; Mitochondrial dysfunction induced by bisphenol A is a factor of its hepatotoxicity in rats. Environ Toxicol. 31:1922–34. DOI: 10.1002/tox.22193. PMID: 26450347.
Article
51. Zhou C, Wang W, Peretz J, Flaws JA. 2015; Bisphenol A exposure inhibits germ cell nest breakdown by reducing apoptosis in cultured neonatal mouse ovaries. Reprod Toxicol. 57:87–99. DOI: 10.1016/j.reprotox.2015.05.012. PMID: 26049153. PMCID: PMC4550517.
Article
52. Prasanth GK, Divya Lakshmanan M, Sadasivan C. 2013; Bisphenol-A can inhibit the enzymatic activity of human superoxide dismutase. Hum Ecol Risk Assess. 19:268–77. DOI: 10.1080/10807039.2012.683720.
Article
53. Huo X, Chen D, He Y, Zhu W, Zhou W, Zhang J. 2015; Bisphenol-A and female infertility: a possible role of gene-environment interactions. Int J Environ Res Public Health. 12:11101–16. DOI: 10.3390/ijerph120911101. PMID: 26371021. PMCID: PMC4586663.
54. Othman AI, Edrees GM, El-Missiry MA, Ali DA, Aboel-Nour M, Dabdoub BR. 2016; Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol Ind Health. 32:1537–49. DOI: 10.1177/0748233714561286. PMID: 25537623.
Article
55. Balakrishnan N, Sendhilvadivu M. 2018; Vitamin E modulates the oxidant-antioxidant imbalance of BPA induced oxidative stress in albino rats. Int J Sci Res. 7:900–6.
56. Saadeldin IM, Hussein MA, Suleiman AH, Abohassan MG, Ahmed MM, Moustafa AA, Moumen AF, Abdel-Aziz Swelum A. 2018; Ameliorative effect of ginseng extract on phthalate and bisphenol A reprotoxicity during pregnancy in rats. Environ Sci Pollut Res Int. 25:21205–15. DOI: 10.1007/s11356-018-2299-1. PMID: 29777495.
Article
57. Ziv-Gal A, Flaws JA. 2016; Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril. 106:827–56. DOI: 10.1016/j.fertnstert.2016.06.027. PMID: 27417731. PMCID: PMC5026908.
Article
58. Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. 2018; Kisspeptin/kisspeptin receptor system in the ovary. Front Endocrinol (Lausanne). 8:365. DOI: 10.3389/fendo.2017.00365. PMID: 29354093. PMCID: PMC5758547.
Article
59. Dhagga N, Gupta P, Seema S. 2017; Histological effects of bisphenol- A on reproductive organs of female Wistar rats. Int J Adv Res. 5:152–62. DOI: 10.21474/IJAR01/5749.
Article
60. Abecia JA, Forcada F, Casao A, Palacín I. 2008; Effect of exogenous melatonin on the ovary, the embryo and the establishment of pregnancy in sheep. Animal. 2:399–404. DOI: 10.1017/S1751731107001383. PMID: 22445042.
Article
61. Maganhin CC, Fuchs LF, Simões RS, Oliveira-Filho RM, de Jesus Simões M, Baracat EC, Soares JM Jr. 2013; Effects of melatonin on ovarian follicles. Eur J Obstet Gynecol Reprod Biol. 166:178–84. DOI: 10.1016/j.ejogrb.2012.10.006. PMID: 23102587.
Article
62. Aydin V, Ömeroğlu S, Kartal B, Coşkun-Akçay N, Akarca-Dizakar SÖ, Türkoğlu İ, Dernek D. 2017; The effects of antioxidant melatonin on rat ovary neonatal exposure to bisphenol A. Duzce Med J. 19:33–7.
63. Abdollahifar MA, Azad N, Sajadi E, Shams Mofarahe Z, Zare F, Moradi A, Rezaee F, Gholamin M, Abdi S. 2019; Vitamin C restores ovarian follicular reservation in a mouse model of aging. Anat Cell Biol. 52:196–203. DOI: 10.5115/acb.2019.52.2.196. PMID: 31338237. PMCID: PMC6624328.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr