Anat Cell Biol.  2021 Jun;54(2):152-164. 10.5115/acb.20.305.

Large-scale functional brain networks for consciousness

Affiliations
  • 1Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
  • 2Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea

Abstract

The generation and maintenance of consciousness are fundamental but difficult subjects in the fields of psychology, philosophy, neuroscience, and medicine. However, recent developments in neuro-imaging techniques coupled with network analysis have greatly advanced our understanding of consciousness. The present review focuses on large-scale functional brain networks based on neuro-imaging data to explain the awareness (contents) and wakefulness of consciousness. Despite limitations, neuroimaging data suggests brain maps for important psychological and cognitive processes such as attention, language, self-referential, emotion, motivation, social behavior, and wakefulness. We considered a review of these advancements would provide new insights into research on the neural correlates of consciousness.

Keyword

Brain; Network; Consciousness; Awareness; Wakefulness

Figure

  • Fig. 1 The Structure of Consciousness. We are aware of external and internal worlds due to the activities of various large-scale functional brain networks. In addition, level of consciousness can affect the contents of consciousness. VN, visual network; AN, auditory network; SMN, somatosensory-motor network; ATN, attention network; FPN, frontoparietal network; CON, cingulo-opercular network; DMN, default mode network; LN, language network; EN, emotional network; MN, motivation network; SCN, social cognition network; SRN, self-referential network; Wake, wakefulness; MCS, minimally conscious state; VS, vegetative state; UWS, unresponsive wakefulness syndrome.

  • Fig. 2 Attention and language network. Results of meta-analyses on attention and language network obtained from neurosynth.org. The search terms used were “Dorsal Attention” (n=99 studies); “Frontoparietal Network” (n= 360 studies); and “Language Network” (n=83 studies). Association test and uniformity test map results are shown in red and blue; respectively. Only positive results are depicted. Results are false discovery rate (FDR) corrected at P<0.01. Further details are available at neurosynth.org.

  • Fig. 3 Default mode network. Results of meta-analysis for the default mode network obtained from neurosynth.org. The search terms used were “Default Mode” (n=777 studies); “Self-referential” (n=166 studies); “Emotion” (n=1,037 studies); “Motivation” (n=189 studies) and “Social Cognition” (n=220 studies). Association test and uniformity test map results are shown in red and blue; respectively. Only positive results are shown. Results are false discovery rate (FDR) corrected at P<0.01. Further details are available at neurosynth.org.


Reference

References

1. Harnad S. 1998; Explaining consciousness: the hard problem. Trends Cogn Sci. 2:234–5. DOI: 10.1016/S1364-6613(98)01183-8. PMID: 21227178.
Article
2. Locke J. 1995. An essay concerning human understanding. Prometheus Books;Amherst: p. 624.
3. Demertzi A, Soddu A, Laureys S. 2013; Consciousness supporting networks. Curr Opin Neurobiol. 23:239–44. DOI: 10.1016/j.conb.2012.12.003. PMID: 23273731.
Article
4. Laureys S. 2005; The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci. 9:556–9. DOI: 10.1016/j.tics.2005.10.010. PMID: 16271507.
Article
5. Zhao T, Zhu Y, Tang H, Xie R, Zhu J, Zhang JH. 2019; Consciousness: new concepts and neural networks. Front Cell Neurosci. 13:302. DOI: 10.3389/fncel.2019.00302. PMID: 31338025. PMCID: PMC6629860.
Article
6. Bayne T, Hohwy J, Owen AM. 2016; Are there levels of consciousness? Trends Cogn Sci. 20:405–13. DOI: 10.1016/j.tics.2016.03.009. PMID: 27101880.
Article
7. Laureys S, Boly M. 2012; Unresponsive wakefulness syndrome. Arch Ital Biol. 150:31–5. DOI: 10.4449/aib.v150i2.1407. PMID: 23165868.
8. Le A, Stojanoski BB, Khan S, Keough M, Niemeier M. 2015; A toggle switch of visual awareness? Cortex. 64:169–78. DOI: 10.1016/j.cortex.2014.09.015. PMID: 25461717.
Article
9. Modolo J, Hassan M, Wendling F, Benquet P. 2020; Decoding the circuitry of consciousness: from local microcircuits to brain-scale networks. Netw Neurosci. 4:315–37. DOI: 10.1162/netn_a_00119. PMID: 32537530. PMCID: PMC7286300.
Article
10. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. 2011; Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 8:665–70. DOI: 10.1038/nmeth.1635. PMID: 21706013. PMCID: PMC3146590.
Article
11. Petersen SE, Posner MI. 2012; The attention system of the human brain: 20 years after. Annu Rev Neurosci. 35:73–89. DOI: 10.1146/annurev-neuro-062111-150525. PMID: 22524787. PMCID: PMC3413263.
Article
12. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. 1998; A common network of functional areas for attention and eye movements. Neuron. 21:761–73. DOI: 10.1016/S0896-6273(00)80593-0. PMID: 9808463.
Article
13. Thompson KG, Biscoe KL, Sato TR. 2005; Neuronal basis of covert spatial attention in the frontal eye field. J Neurosci. 25:9479–87. DOI: 10.1523/JNEUROSCI.0741-05.2005. PMID: 16221858. PMCID: PMC2804969.
Article
14. Lindner A, Iyer A, Kagan I, Andersen RA. 2010; Human posterior parietal cortex plans where to reach and what to avoid. J Neurosci. 30:11715–25. DOI: 10.1523/JNEUROSCI.2849-09.2010. PMID: 20810892. PMCID: PMC2956133.
Article
15. Davidson MC, Marrocco RT. 2000; Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. J Neurophysiol. 83:1536–49. DOI: 10.1152/jn.2000.83.3.1536. PMID: 10712478.
Article
16. Corbetta M, Shulman GL. 2002; Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 3:201–15. DOI: 10.1038/nrn755. PMID: 11994752.
Article
17. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. 2007; Modulation of neuronal interactions through neuronal synchronization. Science. 316:1609–12. DOI: 10.1126/science.1139597. PMID: 17569862.
Article
18. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE. 2006; A core system for the implementation of task sets. Neuron. 50:799–812. DOI: 10.1016/j.neuron.2006.04.031. PMID: 16731517. PMCID: PMC3621133.
Article
19. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. 2007; Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 104:11073–8. DOI: 10.1073/pnas.0704320104. PMID: 17576922. PMCID: PMC1904171.
Article
20. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE. 2008; A dual-networks architecture of top-down control. Trends Cogn Sci. 12:99–105. DOI: 10.1016/j.tics.2008.01.001. PMID: 18262825. PMCID: PMC3632449.
Article
21. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001; Conflict monitoring and cognitive control. Psychol Rev. 108:624–52. DOI: 10.1037/0033-295X.108.3.624. PMID: 11488380.
Article
22. Allman JM, Watson KK, Tetreault NA, Hakeem AY. 2005; Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci. 9:367–73. DOI: 10.1016/j.tics.2005.06.008. PMID: 16002323.
Article
23. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. 2016; A multi-modal parcellation of human cerebral cortex. Nature. 536:171–8. DOI: 10.1038/nature18933. PMID: 27437579. PMCID: PMC4990127.
Article
24. Gazzaniga MS. 2005; Forty-five years of split-brain research and still going strong. Nat Rev Neurosci. 6:653–9. DOI: 10.1038/nrn1723. PMID: 16062172.
Article
25. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. 2013; Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci. 16:1348–55. DOI: 10.1038/nn.3470. PMID: 23892552. PMCID: PMC3758404.
Article
26. Ji JL, Spronk M, Kulkarni K, Repovš G, Anticevic A, Cole MW. 2019; Mapping the human brain's cortical-subcortical functional network organization. Neuroimage. 185:35–57. DOI: 10.1016/j.neuroimage.2018.10.006. PMID: 30291974. PMCID: PMC6289683.
Article
27. Mesulam MM. 1998; From sensation to cognition. Brain. 121(Pt 6):1013–52. DOI: 10.1093/brain/121.6.1013. PMID: 9648540.
Article
28. McAvoy M, Mitra A, Coalson RS, d'Avossa G, Keidel JL, Petersen SE, Raichle ME. 2016; Unmasking language lateralization in human brain intrinsic activity. Cereb Cortex. 26:1733–46. DOI: 10.1093/cercor/bhv007. PMID: 25636911. PMCID: PMC4785953.
Article
29. Herbet G, Duffau H. 2020; Revisiting the functional anatomy of the human brain: toward a meta-networking theory of cerebral functions. Physiol Rev. 100:1181–228. DOI: 10.1152/physrev.00033.2019. PMID: 32078778.
Article
30. Duffau H, Moritz-Gasser S, Mandonnet E. 2014; A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 131:1–10. DOI: 10.1016/j.bandl.2013.05.011. PMID: 23866901.
Article
31. Hickok G, Poeppel D. 2007; The cortical organization of speech processing. Nat Rev Neurosci. 8:393–402. DOI: 10.1038/nrn2113. PMID: 17431404.
Article
32. Herbet G, Moritz-Gasser S, Duffau H. 2017; Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct Funct. 222:1597–610. DOI: 10.1007/s00429-016-1294-x. PMID: 27568379.
Article
33. Herbet G, Moritz-Gasser S, Duffau H. 2018; Electrical stimulation of the dorsolateral prefrontal cortex impairs semantic cognition. Neurology. 90:e1077–84. DOI: 10.1212/WNL.0000000000005174. PMID: 29444964.
Article
34. Holland R, Lambon Ralph MA. 2010; The anterior temporal lobe semantic hub is a part of the language neural network: selective disruption of irregular past tense verbs by rTMS. Cereb Cortex. 20:2771–5. DOI: 10.1093/cercor/bhq020. PMID: 20223808.
Article
35. Papagno C, Miracapillo C, Casarotti A, Romero Lauro LJ, Castellano A, Falini A, Casaceli G, Fava E, Bello L. 2011; What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 134(Pt 2):405–14. DOI: 10.1093/brain/awq283. PMID: 20959310.
Article
36. Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, Bitar A, Fohanno D. 2002; Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 125(Pt 1):199–214. DOI: 10.1093/brain/awf016. PMID: 11834604.
37. Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer B, Tzourio-Mazoyer N, Descoteaux M, Petit L. 2017; Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct. 222:1645–62. DOI: 10.1007/s00429-016-1298-6. PMID: 27581617.
Article
38. Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, Duffau H. 2013; Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 218:105–21. DOI: 10.1007/s00429-012-0386-5. PMID: 22422148.
Article
39. Maldonado IL, Moritz-Gasser S, Duffau H. 2011; Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct. 216:263–74. DOI: 10.1007/s00429-011-0309-x. PMID: 21538022.
Article
40. Dick AS, Tremblay P. 2012; Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain. 135(Pt 12):3529–50. DOI: 10.1093/brain/aws222. PMID: 23107648.
Article
41. van Geemen K, Herbet G, Moritz-Gasser S, Duffau H. 2014; Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients. Hum Brain Mapp. 35:1587–96. DOI: 10.1002/hbm.22275. PMID: 23616288. PMCID: PMC6869841.
Article
42. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE. 1997; Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci. 9:648–63. DOI: 10.1162/jocn.1997.9.5.648. PMID: 23965122.
Article
43. Raichle ME. 2015; The brain's default mode network. Annu Rev Neurosci. 38:433–47. DOI: 10.1146/annurev-neuro-071013-014030. PMID: 25938726.
Article
44. Buckner RL, DiNicola LM. 2019; The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci. 20:593–608. DOI: 10.1038/s41583-019-0212-7. PMID: 31492945.
Article
45. Buckner RL, Andrews-Hanna JR, Schacter DL. 2008; The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 1124:1–38. DOI: 10.1196/annals.1440.011. PMID: 18400922.
46. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. 2010; Functional-anatomic fractionation of the brain's default network. Neuron. 65:550–62. DOI: 10.1016/j.neuron.2010.02.005. PMID: 20188659. PMCID: PMC2848443.
Article
47. Gordon EM, Laumann TO, Marek S, Raut RV, Gratton C, Newbold DJ, Greene DJ, Coalson RS, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF, Nelson SM. 2020; Default-mode network streams for coupling to language and control systems. Proc Natl Acad Sci U S A. 117:17308–19. DOI: 10.1073/pnas.2005238117. PMID: 32632019. PMCID: PMC7382234.
Article
48. DiNicola LM, Braga RM, Buckner RL. 2020; Parallel distributed networks dissociate episodic and social functions within the individual. J Neurophysiol. 123:1144–79. DOI: 10.1152/jn.00529.2019. PMID: 32049593. PMCID: PMC7099479.
Article
49. Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ. 2006; Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci. 26:9503–11. DOI: 10.1523/JNEUROSCI.2021-06.2006. PMID: 16971534. PMCID: PMC2634865.
Article
50. Hiser J, Koenigs M. 2018; The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry. 83:638–47. DOI: 10.1016/j.biopsych.2017.10.030. PMID: 29275839. PMCID: PMC5862740.
Article
51. Grabenhorst F, Rolls ET. 2011; Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 15:56–67. DOI: 10.1016/j.tics.2010.12.004. PMID: 21216655.
Article
52. Clithero JA, Rangel A. 2014; Informatic parcellation of the network involved in the computation of subjective value. Soc Cogn Affect Neurosci. 9:1289–302. DOI: 10.1093/scan/nst106. PMID: 23887811. PMCID: PMC4158359.
Article
53. Shenhav A, Buckner RL. 2014; Neural correlates of dueling affective reactions to win-win choices. Proc Natl Acad Sci U S A. 111:10978–83. DOI: 10.1073/pnas.1405725111. PMID: 25024178. PMCID: PMC4121780.
Article
54. Shenhav A, Karmarkar UR. 2019; Dissociable components of the reward circuit are involved in appraisal versus choice. Sci Rep. 9:1958. DOI: 10.1038/s41598-019-38927-7. PMID: 30760824. PMCID: PMC6374444.
Article
55. Smith DV, Hayden BY, Truong TK, Song AW, Platt ML, Huettel SA. 2010; Distinct value signals in anterior and posterior ventromedial prefrontal cortex. J Neurosci. 30:2490–5. DOI: 10.1523/JNEUROSCI.3319-09.2010. PMID: 20164333. PMCID: PMC2856318.
Article
56. Bar M, Aminoff E. 2003; Cortical analysis of visual context. Neuron. 38:347–58. DOI: 10.1016/S0896-6273(03)00167-3. PMID: 12718867.
Article
57. Ranganath C, Ritchey M. 2012; Two cortical systems for memory-guided behaviour. Nat Rev Neurosci. 13:713–26. DOI: 10.1038/nrn3338. PMID: 22992647.
Article
58. Squire LR, Stark CE, Clark RE. 2004; The medial temporal lobe. Annu Rev Neurosci. 27:279–306. DOI: 10.1146/annurev.neuro.27.070203.144130. PMID: 15217334. PMCID: PMC2064941.
Article
59. Wig GS, Grafton ST, Demos KE, Wolford GL, Petersen SE, Kelley WM. 2008; Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults. Proc Natl Acad Sci U S A. 105:18555–60. DOI: 10.1073/pnas.0804546105. PMID: 19001272. PMCID: PMC2582045.
Article
60. Lee JH, Cheon YH, Woo RS, Song DY, Moon C, Baik TK. 2012; Evidence of early involvement of apoptosis inducing factor-induced neuronal death in Alzheimer brain. Anat Cell Biol. 45:26–37. DOI: 10.5115/acb.2012.45.1.26. PMID: 22536549. PMCID: PMC3328738.
Article
61. Kim YH, Park JH. 2017; Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia. Anat Cell Biol. 50:143–51. DOI: 10.5115/acb.2017.50.2.143. PMID: 28713618. PMCID: PMC5509898.
Article
62. Frewen P, Schroeter ML, Riva G, Cipresso P, Fairfield B, Padulo C, Kemp AH, Palaniyappan L, Owolabi M, Kusi-Mensah K, Polyakova M, Fehertoi N, D'Andrea W, Lowe L, Northoff G. 2020; Neuroimaging the consciousness of self: review, and conceptual-methodological framework. Neurosci Biobehav Rev. 112:164–212. DOI: 10.1016/j.neubiorev.2020.01.023. PMID: 31996300.
Article
63. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD. 2008; Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage. 42:998–1031. DOI: 10.1016/j.neuroimage.2008.03.059. PMID: 18579414. PMCID: PMC2752702.
Article
64. Legrand D, Ruby P. 2009; What is self-specific? Theoretical investigation and critical review of neuroimaging results. Psychol Rev. 116:252–82. DOI: 10.1037/a0014172. PMID: 19159156.
Article
65. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, Weber J, Ochsner KN. 2014; Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex. 24:2981–90. DOI: 10.1093/cercor/bht154. PMID: 23765157. PMCID: PMC4193464.
Article
66. Koush Y, Pichon S, Eickhoff SB, Van De Ville D, Vuilleumier P, Scharnowski F. 2019; Brain networks for engaging oneself in positive-social emotion regulation. Neuroimage. 189:106–15. DOI: 10.1016/j.neuroimage.2018.12.049. PMID: 30594682.
Article
67. Dörfel D, Lamke JP, Hummel F, Wagner U, Erk S, Walter H. 2014; Common and differential neural networks of emotion regulation by Detachment, Reinterpretation, Distraction, and Expressive Suppression: a comparative fMRI investigation. Neuroimage. 101:298–309. DOI: 10.1016/j.neuroimage.2014.06.051. PMID: 24993897.
Article
68. Kalisch R, Wiech K, Critchley HD, Seymour B, O'Doherty JP, Oakley DA, Allen P, Dolan RJ. 2005; Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci. 17:874–83. DOI: 10.1162/0898929054021184. PMID: 15969906.
Article
69. Davey CG, Pujol J, Harrison BJ. 2016; Mapping the self in the brain's default mode network. Neuroimage. 132:390–7. DOI: 10.1016/j.neuroimage.2016.02.022. PMID: 26892855.
Article
70. Davey CG, Breakspear M, Pujol J, Harrison BJ. 2017; A brain model of disturbed self-appraisal in depression. Am J Psychiatry. 174:895–903. DOI: 10.1176/appi.ajp.2017.16080883. PMID: 28595489.
Article
71. Ruby P, Decety J. 2004; How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. J Cogn Neurosci. 16:988–99. DOI: 10.1162/0898929041502661. PMID: 15298786.
Article
72. Cromwell HC, Abe N, Barrett KC, Caldwell-Harris C, Gendolla GHE, Koncz R, Sachdev PS. 2020; Mapping the interconnected neural systems underlying motivation and emotion: a key step toward understanding the human affectome. Neurosci Biobehav Rev. 113:204–26. DOI: 10.1016/j.neubiorev.2020.02.032. PMID: 32126241.
Article
73. Markett S, Wudarczyk OA, Biswal BB, Jawinski P, Montag C. 2018; Affective network neuroscience. Front Neurosci. 12:895. DOI: 10.3389/fnins.2018.00895. PMID: 30618543. PMCID: PMC6298244.
Article
74. Panksepp J. 2010; Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression. Dialogues Clin Neurosci. 12:533–45. DOI: 10.31887/DCNS.2010.12.4/jpanksepp. PMID: 21319497. PMCID: PMC3181986.
Article
75. Montag C, Widenhorn-Müller K, Panksepp J, Kiefer M. 2017; Individual differences in Affective Neuroscience Personality Scale (ANPS) primary emotional traits and depressive tendencies. Compr Psychiatry. 73:136–42. DOI: 10.1016/j.comppsych.2016.11.007. PMID: 27940318.
Article
76. Davis KL, Montag C. 2018; A Tribute to Jaak Panksepp (1943-2017). Personal Neurosci. 1:e9. DOI: 10.1017/pen.2018.5. PMID: 32435729. PMCID: PMC7219686.
Article
77. Gilson M, Deco G, Friston KJ, Hagmann P, Mantini D, Betti V, Romani GL, Corbetta M. 2018; Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. Neuroimage. 180(Pt B):534–46. DOI: 10.1016/j.neuroimage.2017.09.061. PMID: 29024792.
Article
78. Barrett LF. 2017; The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 12:1833. DOI: 10.1093/scan/nsx060. PMID: 28472391. PMCID: PMC5691871.
Article
79. Knutson B, Burgdorf J, Panksepp J. 2002; Ultrasonic vocalizations as indices of affective states in rats. Psychol Bull. 128:961–77. DOI: 10.1037/0033-2909.128.6.961. PMID: 12405139.
Article
80. Cromwell HC, Atchley RM. 2015; Influence of emotional states on inhibitory gating: animals models to clinical neurophysiology. Behav Brain Res. 276:67–75. DOI: 10.1016/j.bbr.2014.05.028. PMID: 24861710. PMCID: PMC4241394.
Article
81. Wöhr M, Seffer D, Schwarting RK. 2016; Studying socio-affective communication in rats through playback of ultrasonic vocalizations. Curr Protoc Neurosci. 75:8.35.1–8.35.17. DOI: 10.1002/cpns.7. PMID: 27063787.
Article
82. Panksepp J. 2011; Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLoS One. 6:e21236. DOI: 10.1371/journal.pone.0021236. PMID: 21915252. PMCID: PMC3168430.
Article
83. Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B, Dolan RJ, Frith CD. 2007; When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science. 317:1079–83. DOI: 10.1126/science.1144298. PMID: 17717184. PMCID: PMC2648508.
Article
84. Saarimäki H, Glerean E, Smirnov D, Mynttinen H, Jääskeläinen IP, Sams M, Nummenmaa L. 2020. Classification of emotions based on functional connectivity patterns of the human brain. BioRxiv 910869 [Preprint]. Available from: https://doi.org/10.1101/2020.01.17.910869. cited 2020 Jan 18. DOI: 10.1101/2020.01.17.910869.
Article
85. Tomkins SS. 1978; Script theory: differential magnification of affects. Nebr Symp Motiv. 26:201–36. PMID: 552608.
86. Lahvis GP, Panksepp JB, Kennedy BC, Wilson CR, Merriman DK. 2015; Social conditioned place preference in the captive ground squirrel (Ictidomys tridecemlineatus): social reward as a natural phenotype. J Comp Psychol. 129:291–303. DOI: 10.1037/a0039435. PMID: 26147706. PMCID: PMC4621271.
Article
87. Kim SI. 2013; Neuroscientific model of motivational process. Front Psychol. 4:98. DOI: 10.3389/fpsyg.2013.00098. PMID: 23459598. PMCID: PMC3586760.
Article
88. Haber SN, Knutson B. 2010; The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 35:4–26. DOI: 10.1038/npp.2009.129. PMID: 19812543. PMCID: PMC3055449.
Article
89. Bjork JM, Knutson B, Fong GW, Caggiano DM, Bennett SM, Hommer DW. 2004; Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J Neurosci. 24:1793–802. DOI: 10.1523/JNEUROSCI.4862-03.2004. PMID: 14985419. PMCID: PMC6730402.
Article
90. Peterson RL. 2005; The neuroscience of investing: fMRI of the reward system. Brain Res Bull. 67:391–7. DOI: 10.1016/j.brainresbull.2005.06.015. PMID: 16216685.
Article
91. Myers CA, Wang C, Black JM, Bugescu N, Hoeft F. 2016; The matter of motivation: striatal resting-state connectivity is dissociable between grit and growth mindset. Soc Cogn Affect Neurosci. 11:1521–7. DOI: 10.1093/scan/nsw065. PMID: 27217105. PMCID: PMC5040906.
Article
92. Contreras-Huerta LS, Pisauro MA, Apps MAJ. 2020; Effort shapes social cognition and behaviour: a neuro-cognitive framework. Neurosci Biobehav Rev. 118:426–39. DOI: 10.1016/j.neubiorev.2020.08.003. PMID: 32818580.
Article
93. Lockwood PL, Apps MA, Valton V, Viding E, Roiser JP. 2016; Neurocomputational mechanisms of prosocial learning and links to empathy. Proc Natl Acad Sci U S A. 113:9763–8. DOI: 10.1073/pnas.1603198113. PMID: 27528669. PMCID: PMC5024617.
Article
94. Wimmer H, Perner J. 1983; Beliefs about beliefs: representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition. 13:103–28. DOI: 10.1016/0010-0277(83)90004-5.
Article
95. Kovács ÁM, Téglás E, Endress AD. 2010; The social sense: susceptibility to others' beliefs in human infants and adults. Science. 330:1830–4. DOI: 10.1126/science.1190792. PMID: 21205671.
Article
96. Meyer ML, Spunt RP, Berkman ET, Taylor SE, Lieberman MD. 2012; Evidence for social working memory from a parametric functional MRI study. Proc Natl Acad Sci U S A. 109:1883–8. DOI: 10.1073/pnas.1121077109. PMID: 22308468. PMCID: PMC3277536.
Article
97. Mahy CE, Moses LJ, Pfeifer JH. 2014; How and where: theory-of-mind in the brain. Dev Cogn Neurosci. 9:68–81. DOI: 10.1016/j.dcn.2014.01.002. PMID: 24552989. PMCID: PMC6989753.
Article
98. Cole GG, Millett AC. 2019; The closing of the theory of mind: a critique of perspective-taking. Psychon Bull Rev. 26:1787–802. DOI: 10.3758/s13423-019-01657-y. PMID: 31515733.
Article
99. Amodio DM, Frith CD. 2006; Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 7:268–77. DOI: 10.1038/nrn1884. PMID: 16552413.
Article
100. Döhnel K, Schuwerk T, Meinhardt J, Sodian B, Hajak G, Sommer M. 2012; Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning. Neuroimage. 60:1652–61. DOI: 10.1016/j.neuroimage.2012.01.073. PMID: 22300812.
Article
101. Frith U, Frith C. 2010; The social brain: allowing humans to boldly go where no other species has been. Philos Trans R Soc Lond B Biol Sci. 365:165–76. DOI: 10.1098/rstb.2009.0160. PMID: 20008394. PMCID: PMC2842701.
Article
102. Bortolini T, Bado P, Hoefle S, Engel A, Zahn R, de Oliveira Souza R, Dreher JC, Moll J. 2017; Neural bases of ingroup altruistic motivation in soccer fans. Sci Rep. 7:16122. DOI: 10.1038/s41598-017-15385-7. PMID: 29170383. PMCID: PMC5700961.
Article
103. Le Bouc R, Pessiglione M. 2013; Imaging social motivation: distinct brain mechanisms drive effort production during collaboration versus competition. J Neurosci. 33:15894–902. DOI: 10.1523/JNEUROSCI.0143-13.2013. PMID: 24089495. PMCID: PMC6618480.
Article
104. Wittmann MK, Lockwood PL, Rushworth MFS. 2018; Neural mechanisms of social cognition in primates. Annu Rev Neurosci. 41:99–118. DOI: 10.1146/annurev-neuro-080317-061450. PMID: 29561702. PMCID: PMC7116801.
Article
105. Bonnelle V, Manohar S, Behrens T, Husain M. 2016; Individual differences in premotor brain systems underlie behavioral apathy. Cereb Cortex. 26:807–19. DOI: 10.1093/cercor/bhv247. PMID: 26564255. PMCID: PMC4712805.
Article
106. Chong TT, Apps M, Giehl K, Sillence A, Grima LL, Husain M. 2017; Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biol. 15:e1002598. DOI: 10.1371/journal.pbio.1002598. PMID: 28234892. PMCID: PMC5325181.
Article
107. Klein-Flügge MC, Kennerley SW, Friston K, Bestmann S. 2016; Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort-reward trade-off. J Neurosci. 36:10002–15. DOI: 10.1523/JNEUROSCI.0292-16.2016. PMID: 27683898. PMCID: PMC5039251.
Article
108. Kennerley SW, Wallis JD. 2009; Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur J Neurosci. 29:2061–73. DOI: 10.1111/j.1460-9568.2009.06743.x. PMID: 19453638. PMCID: PMC2715849.
Article
109. Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF. 2006; Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw. 19:1302–14. DOI: 10.1016/j.neunet.2006.03.005. PMID: 16949252. PMCID: PMC2519033.
Article
110. Scammell TE, Arrigoni E, Lipton JO. 2017; Neural circuitry of wakefulness and sleep. Neuron. 93:747–65. DOI: 10.1016/j.neuron.2017.01.014. PMID: 28231463. PMCID: PMC5325713.
Article
111. Parvizi J, Damasio A. 2001; Consciousness and the brainstem. Cognition. 79:135–60. DOI: 10.1016/S0010-0277(00)00127-X. PMID: 11164026.
Article
112. Bassetti C, Mathis J, Gugger M, Lovblad KO, Hess CW. 1996; Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol. 39:471–80. DOI: 10.1002/ana.410390409. PMID: 8619525.
Article
113. Ranson SW. 1937; Some functions of the hypothalamus: Harvey Lecture, December 17, 1936. Bull N Y Acad Med. 13:241–71. PMID: 19312019. PMCID: PMC1966114.
114. McCormick DA, McGinley MJ, Salkoff DB. 2015; Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol. 31:133–40. DOI: 10.1016/j.conb.2014.10.003. PMID: 25460069. PMCID: PMC4375098.
Article
115. Bedont JL, Blackshaw S. 2015; Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks. Front Syst Neurosci. 9:74. DOI: 10.3389/fnsys.2015.00074. PMID: 26005407. PMCID: PMC4424844.
Article
116. Welsh DK, Takahashi JS, Kay SA. 2010; Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 72:551–77. DOI: 10.1146/annurev-physiol-021909-135919. PMID: 20148688. PMCID: PMC3758475.
Article
117. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. 1998; The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 95:322–7. DOI: 10.1073/pnas.95.1.322. PMID: 9419374. PMCID: PMC18213.
Article
118. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. 1998; Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 92:573–85. DOI: 10.1016/S0092-8674(00)80949-6. PMID: 9491897.
Article
119. Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. 2016; Progressive loss of the orexin neurons reveals dual effects on wakefulness. Sleep. 39:369–77. DOI: 10.5665/sleep.5446. PMID: 26446125. PMCID: PMC4712398.
Article
120. Wang HL, Morales M. 2009; Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci. 29:340–58. DOI: 10.1111/j.1460-9568.2008.06576.x. PMID: 19200238. PMCID: PMC3833361.
Article
121. Cox J, Pinto L, Dan Y. 2016; Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun. 7:10763. DOI: 10.1038/ncomms10763. PMID: 26911837. PMCID: PMC4773416.
Article
122. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L. 2010; Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 13:1526–33. DOI: 10.1038/nn.2682. PMID: 21037585. PMCID: PMC3174240.
Article
123. Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J. 2010; Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci. 30:14543–51. DOI: 10.1523/JNEUROSCI.3037-10.2010. PMID: 20980612. PMCID: PMC2989851.
Article
124. Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L. 2014; Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron. 83:645–62. DOI: 10.1016/j.neuron.2014.06.024. PMID: 25102560. PMCID: PMC4779447.
Article
125. Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M. 2013; Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain. 6:59. DOI: 10.1186/1756-6606-6-59. PMID: 24370235. PMCID: PMC3879646.
Article
126. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. 2001; Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 21:1787–94. DOI: 10.1523/JNEUROSCI.21-05-01787.2001. PMID: 11222668. PMCID: PMC6762940.
Article
127. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. 2016; VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. 19:1356–66. DOI: 10.1038/nn.4377. PMID: 27595385. PMCID: PMC5519826.
Article
128. Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS. 2016; Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: a study using a knockout mouse model. Neuropharmacology. 106:20–34. DOI: 10.1016/j.neuropharm.2015.12.014. PMID: 26723880.
Article
129. Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG, Hastings MH, Franks NP, Wisden W. 2014; Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol. 24:2838–44. DOI: 10.1016/j.cub.2014.10.019. PMID: 25454592. PMCID: PMC4252164.
Article
130. Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T. 2013; GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits. 7:192. DOI: 10.3389/fncir.2013.00192. PMID: 24348342. PMCID: PMC3844858.
Article
131. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB. 2002; Afferents to the ventrolateral preoptic nucleus. J Neurosci. 22:977–90. DOI: 10.1523/JNEUROSCI.22-03-00977.2002. PMID: 11826126. PMCID: PMC6758527.
Article
132. Lu J, Sherman D, Devor M, Saper CB. 2006; A putative flip-flop switch for control of REM sleep. Nature. 441:589–94. DOI: 10.1038/nature04767. PMID: 16688184.
Article
133. Krenzer M, Anaclet C, Vetrivelan R, Wang N, Vong L, Lowell BB, Fuller PM, Lu J. 2011; Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One. 6:e24998. DOI: 10.1371/journal.pone.0024998. PMID: 22043278. PMCID: PMC3197189.
Article
134. Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. 2014; Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 34:4708–27. DOI: 10.1523/JNEUROSCI.2617-13.2014. PMID: 24672016. PMCID: PMC3965793.
Article
135. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN. 2015; Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A. 112:584–9. DOI: 10.1073/pnas.1423136112. PMID: 25548191. PMCID: PMC4299243.
Article
136. Tarun A, Wainstein-Andriano D, Sterpenich V, Bayer L, Perogamvros L, Solms M, Axmacher N, Schwartz S, Van De Ville D. 2020; NREM sleep stages specifically alter dynamical integration of large-scale brain networks. iScience. 24:101923. DOI: 10.1016/j.isci.2020.101923. PMID: 33409474. PMCID: PMC7773861.
Article
137. Huang Z, Zhang J, Wu J, Mashour GA, Hudetz AG. 2020; Temporal circuit of macroscale dynamic brain activity supports human consciousness. Sci Adv. 6:eaaz0087. DOI: 10.1126/sciadv.aaz0087. PMID: 32195349. PMCID: PMC7065875.
Article
138. Dehaene S, Changeux JP. 2011; Experimental and theoretical approaches to conscious processing. Neuron. 70:200–27. DOI: 10.1016/j.neuron.2011.03.018. PMID: 21521609.
Article
139. Berkovitch L, Dehaene S, Gaillard R. 2017; Disruption of conscious access in schizophrenia. Trends Cogn Sci. 21:878–92. DOI: 10.1016/j.tics.2017.08.006. PMID: 28967533.
Article
140. Karnani MM, Jackson J, Ayzenshtat I, Hamzehei Sichani A, Manoocheri K, Kim S, Yuste R. 2016; Opening holes in the blanket of inhibition: localized lateral disinhibition by VIP interneurons. J Neurosci. 36:3471–80. DOI: 10.1523/JNEUROSCI.3646-15.2016. PMID: 27013676. PMCID: PMC4804006.
Article
141. Muñoz W, Tremblay R, Levenstein D, Rudy B. 2017; Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science. 355:954–59. DOI: 10.1126/science.aag2599. PMID: 28254942.
Article
142. Jensen O, Mazaheri A. 2010; Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 4:186. DOI: 10.3389/fnhum.2010.00186. PMID: 21119777. PMCID: PMC2990626.
Article
143. Avena-Koenigsberger A, Misic B, Sporns O. 2017; Communication dynamics in complex brain networks. Nat Rev Neurosci. 19:17–33. DOI: 10.1038/nrn.2017.149. PMID: 29238085.
Article
144. Lehembre R, Marie-Aurélie B, Vanhaudenhuyse A, Chatelle C, Cologan V, Leclercq Y, Soddu A, Macq B, Laureys S, Noirhomme Q. 2012; Resting-state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct Neurol. 27:41–7. PMID: 22687166. PMCID: PMC3812750.
145. Stefan S, Schorr B, Lopez-Rolon A, Kolassa IT, Shock JP, Rosenfelder M, Heck S, Bender A. 2018; Consciousness indexing and outcome prediction with resting-state EEG in severe disorders of consciousness. Brain Topogr. 31:848–62. DOI: 10.1007/s10548-018-0643-x. PMID: 29666960.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr