2. Locke J. 1995. An essay concerning human understanding. Prometheus Books;Amherst: p. 624.
9. Modolo J, Hassan M, Wendling F, Benquet P. 2020; Decoding the circuitry of consciousness: from local microcircuits to brain-scale networks. Netw Neurosci. 4:315–37. DOI:
10.1162/netn_a_00119. PMID:
32537530. PMCID:
PMC7286300.
Article
10. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. 2011; Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 8:665–70. DOI:
10.1038/nmeth.1635. PMID:
21706013. PMCID:
PMC3146590.
Article
12. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. 1998; A common network of functional areas for attention and eye movements. Neuron. 21:761–73. DOI:
10.1016/S0896-6273(00)80593-0. PMID:
9808463.
Article
15. Davidson MC, Marrocco RT. 2000; Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. J Neurophysiol. 83:1536–49. DOI:
10.1152/jn.2000.83.3.1536. PMID:
10712478.
Article
16. Corbetta M, Shulman GL. 2002; Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 3:201–15. DOI:
10.1038/nrn755. PMID:
11994752.
Article
17. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. 2007; Modulation of neuronal interactions through neuronal synchronization. Science. 316:1609–12. DOI:
10.1126/science.1139597. PMID:
17569862.
Article
18. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE. 2006; A core system for the implementation of task sets. Neuron. 50:799–812. DOI:
10.1016/j.neuron.2006.04.031. PMID:
16731517. PMCID:
PMC3621133.
Article
19. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. 2007; Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 104:11073–8. DOI:
10.1073/pnas.0704320104. PMID:
17576922. PMCID:
PMC1904171.
Article
23. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. 2016; A multi-modal parcellation of human cerebral cortex. Nature. 536:171–8. DOI:
10.1038/nature18933. PMID:
27437579. PMCID:
PMC4990127.
Article
24. Gazzaniga MS. 2005; Forty-five years of split-brain research and still going strong. Nat Rev Neurosci. 6:653–9. DOI:
10.1038/nrn1723. PMID:
16062172.
Article
25. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. 2013; Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci. 16:1348–55. DOI:
10.1038/nn.3470. PMID:
23892552. PMCID:
PMC3758404.
Article
28. McAvoy M, Mitra A, Coalson RS, d'Avossa G, Keidel JL, Petersen SE, Raichle ME. 2016; Unmasking language lateralization in human brain intrinsic activity. Cereb Cortex. 26:1733–46. DOI:
10.1093/cercor/bhv007. PMID:
25636911. PMCID:
PMC4785953.
Article
29. Herbet G, Duffau H. 2020; Revisiting the functional anatomy of the human brain: toward a meta-networking theory of cerebral functions. Physiol Rev. 100:1181–228. DOI:
10.1152/physrev.00033.2019. PMID:
32078778.
Article
30. Duffau H, Moritz-Gasser S, Mandonnet E. 2014; A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 131:1–10. DOI:
10.1016/j.bandl.2013.05.011. PMID:
23866901.
Article
31. Hickok G, Poeppel D. 2007; The cortical organization of speech processing. Nat Rev Neurosci. 8:393–402. DOI:
10.1038/nrn2113. PMID:
17431404.
Article
32. Herbet G, Moritz-Gasser S, Duffau H. 2017; Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct Funct. 222:1597–610. DOI:
10.1007/s00429-016-1294-x. PMID:
27568379.
Article
33. Herbet G, Moritz-Gasser S, Duffau H. 2018; Electrical stimulation of the dorsolateral prefrontal cortex impairs semantic cognition. Neurology. 90:e1077–84. DOI:
10.1212/WNL.0000000000005174. PMID:
29444964.
Article
34. Holland R, Lambon Ralph MA. 2010; The anterior temporal lobe semantic hub is a part of the language neural network: selective disruption of irregular past tense verbs by rTMS. Cereb Cortex. 20:2771–5. DOI:
10.1093/cercor/bhq020. PMID:
20223808.
Article
35. Papagno C, Miracapillo C, Casarotti A, Romero Lauro LJ, Castellano A, Falini A, Casaceli G, Fava E, Bello L. 2011; What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 134(Pt 2):405–14. DOI:
10.1093/brain/awq283. PMID:
20959310.
Article
36. Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, Bitar A, Fohanno D. 2002; Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 125(Pt 1):199–214. DOI:
10.1093/brain/awf016. PMID:
11834604.
37. Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer B, Tzourio-Mazoyer N, Descoteaux M, Petit L. 2017; Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct. 222:1645–62. DOI:
10.1007/s00429-016-1298-6. PMID:
27581617.
Article
38. Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, Duffau H. 2013; Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 218:105–21. DOI:
10.1007/s00429-012-0386-5. PMID:
22422148.
Article
39. Maldonado IL, Moritz-Gasser S, Duffau H. 2011; Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct. 216:263–74. DOI:
10.1007/s00429-011-0309-x. PMID:
21538022.
Article
40. Dick AS, Tremblay P. 2012; Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain. 135(Pt 12):3529–50. DOI:
10.1093/brain/aws222. PMID:
23107648.
Article
41. van Geemen K, Herbet G, Moritz-Gasser S, Duffau H. 2014; Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients. Hum Brain Mapp. 35:1587–96. DOI:
10.1002/hbm.22275. PMID:
23616288. PMCID:
PMC6869841.
Article
42. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE. 1997; Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci. 9:648–63. DOI:
10.1162/jocn.1997.9.5.648. PMID:
23965122.
Article
44. Buckner RL, DiNicola LM. 2019; The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci. 20:593–608. DOI:
10.1038/s41583-019-0212-7. PMID:
31492945.
Article
45. Buckner RL, Andrews-Hanna JR, Schacter DL. 2008; The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 1124:1–38. DOI:
10.1196/annals.1440.011. PMID:
18400922.
47. Gordon EM, Laumann TO, Marek S, Raut RV, Gratton C, Newbold DJ, Greene DJ, Coalson RS, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF, Nelson SM. 2020; Default-mode network streams for coupling to language and control systems. Proc Natl Acad Sci U S A. 117:17308–19. DOI:
10.1073/pnas.2005238117. PMID:
32632019. PMCID:
PMC7382234.
Article
48. DiNicola LM, Braga RM, Buckner RL. 2020; Parallel distributed networks dissociate episodic and social functions within the individual. J Neurophysiol. 123:1144–79. DOI:
10.1152/jn.00529.2019. PMID:
32049593. PMCID:
PMC7099479.
Article
49. Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ. 2006; Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci. 26:9503–11. DOI:
10.1523/JNEUROSCI.2021-06.2006. PMID:
16971534. PMCID:
PMC2634865.
Article
52. Clithero JA, Rangel A. 2014; Informatic parcellation of the network involved in the computation of subjective value. Soc Cogn Affect Neurosci. 9:1289–302. DOI:
10.1093/scan/nst106. PMID:
23887811. PMCID:
PMC4158359.
Article
57. Ranganath C, Ritchey M. 2012; Two cortical systems for memory-guided behaviour. Nat Rev Neurosci. 13:713–26. DOI:
10.1038/nrn3338. PMID:
22992647.
Article
59. Wig GS, Grafton ST, Demos KE, Wolford GL, Petersen SE, Kelley WM. 2008; Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults. Proc Natl Acad Sci U S A. 105:18555–60. DOI:
10.1073/pnas.0804546105. PMID:
19001272. PMCID:
PMC2582045.
Article
60. Lee JH, Cheon YH, Woo RS, Song DY, Moon C, Baik TK. 2012; Evidence of early involvement of apoptosis inducing factor-induced neuronal death in Alzheimer brain. Anat Cell Biol. 45:26–37. DOI:
10.5115/acb.2012.45.1.26. PMID:
22536549. PMCID:
PMC3328738.
Article
61. Kim YH, Park JH. 2017; Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia. Anat Cell Biol. 50:143–51. DOI:
10.5115/acb.2017.50.2.143. PMID:
28713618. PMCID:
PMC5509898.
Article
62. Frewen P, Schroeter ML, Riva G, Cipresso P, Fairfield B, Padulo C, Kemp AH, Palaniyappan L, Owolabi M, Kusi-Mensah K, Polyakova M, Fehertoi N, D'Andrea W, Lowe L, Northoff G. 2020; Neuroimaging the consciousness of self: review, and conceptual-methodological framework. Neurosci Biobehav Rev. 112:164–212. DOI:
10.1016/j.neubiorev.2020.01.023. PMID:
31996300.
Article
63. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD. 2008; Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage. 42:998–1031. DOI:
10.1016/j.neuroimage.2008.03.059. PMID:
18579414. PMCID:
PMC2752702.
Article
64. Legrand D, Ruby P. 2009; What is self-specific? Theoretical investigation and critical review of neuroimaging results. Psychol Rev. 116:252–82. DOI:
10.1037/a0014172. PMID:
19159156.
Article
65. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, Weber J, Ochsner KN. 2014; Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex. 24:2981–90. DOI:
10.1093/cercor/bht154. PMID:
23765157. PMCID:
PMC4193464.
Article
66. Koush Y, Pichon S, Eickhoff SB, Van De Ville D, Vuilleumier P, Scharnowski F. 2019; Brain networks for engaging oneself in positive-social emotion regulation. Neuroimage. 189:106–15. DOI:
10.1016/j.neuroimage.2018.12.049. PMID:
30594682.
Article
67. Dörfel D, Lamke JP, Hummel F, Wagner U, Erk S, Walter H. 2014; Common and differential neural networks of emotion regulation by Detachment, Reinterpretation, Distraction, and Expressive Suppression: a comparative fMRI investigation. Neuroimage. 101:298–309. DOI:
10.1016/j.neuroimage.2014.06.051. PMID:
24993897.
Article
68. Kalisch R, Wiech K, Critchley HD, Seymour B, O'Doherty JP, Oakley DA, Allen P, Dolan RJ. 2005; Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci. 17:874–83. DOI:
10.1162/0898929054021184. PMID:
15969906.
Article
71. Ruby P, Decety J. 2004; How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. J Cogn Neurosci. 16:988–99. DOI:
10.1162/0898929041502661. PMID:
15298786.
Article
72. Cromwell HC, Abe N, Barrett KC, Caldwell-Harris C, Gendolla GHE, Koncz R, Sachdev PS. 2020; Mapping the interconnected neural systems underlying motivation and emotion: a key step toward understanding the human affectome. Neurosci Biobehav Rev. 113:204–26. DOI:
10.1016/j.neubiorev.2020.02.032. PMID:
32126241.
Article
75. Montag C, Widenhorn-Müller K, Panksepp J, Kiefer M. 2017; Individual differences in Affective Neuroscience Personality Scale (ANPS) primary emotional traits and depressive tendencies. Compr Psychiatry. 73:136–42. DOI:
10.1016/j.comppsych.2016.11.007. PMID:
27940318.
Article
77. Gilson M, Deco G, Friston KJ, Hagmann P, Mantini D, Betti V, Romani GL, Corbetta M. 2018; Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. Neuroimage. 180(Pt B):534–46. DOI:
10.1016/j.neuroimage.2017.09.061. PMID:
29024792.
Article
78. Barrett LF. 2017; The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 12:1833. DOI:
10.1093/scan/nsx060. PMID:
28472391. PMCID:
PMC5691871.
Article
81. Wöhr M, Seffer D, Schwarting RK. 2016; Studying socio-affective communication in rats through playback of ultrasonic vocalizations. Curr Protoc Neurosci. 75:8.35.1–8.35.17. DOI:
10.1002/cpns.7. PMID:
27063787.
Article
83. Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B, Dolan RJ, Frith CD. 2007; When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science. 317:1079–83. DOI:
10.1126/science.1144298. PMID:
17717184. PMCID:
PMC2648508.
Article
85. Tomkins SS. 1978; Script theory: differential magnification of affects. Nebr Symp Motiv. 26:201–36. PMID:
552608.
86. Lahvis GP, Panksepp JB, Kennedy BC, Wilson CR, Merriman DK. 2015; Social conditioned place preference in the captive ground squirrel (Ictidomys tridecemlineatus): social reward as a natural phenotype. J Comp Psychol. 129:291–303. DOI:
10.1037/a0039435. PMID:
26147706. PMCID:
PMC4621271.
Article
89. Bjork JM, Knutson B, Fong GW, Caggiano DM, Bennett SM, Hommer DW. 2004; Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J Neurosci. 24:1793–802. DOI:
10.1523/JNEUROSCI.4862-03.2004. PMID:
14985419. PMCID:
PMC6730402.
Article
91. Myers CA, Wang C, Black JM, Bugescu N, Hoeft F. 2016; The matter of motivation: striatal resting-state connectivity is dissociable between grit and growth mindset. Soc Cogn Affect Neurosci. 11:1521–7. DOI:
10.1093/scan/nsw065. PMID:
27217105. PMCID:
PMC5040906.
Article
93. Lockwood PL, Apps MA, Valton V, Viding E, Roiser JP. 2016; Neurocomputational mechanisms of prosocial learning and links to empathy. Proc Natl Acad Sci U S A. 113:9763–8. DOI:
10.1073/pnas.1603198113. PMID:
27528669. PMCID:
PMC5024617.
Article
94. Wimmer H, Perner J. 1983; Beliefs about beliefs: representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition. 13:103–28. DOI:
10.1016/0010-0277(83)90004-5.
Article
95. Kovács ÁM, Téglás E, Endress AD. 2010; The social sense: susceptibility to others' beliefs in human infants and adults. Science. 330:1830–4. DOI:
10.1126/science.1190792. PMID:
21205671.
Article
96. Meyer ML, Spunt RP, Berkman ET, Taylor SE, Lieberman MD. 2012; Evidence for social working memory from a parametric functional MRI study. Proc Natl Acad Sci U S A. 109:1883–8. DOI:
10.1073/pnas.1121077109. PMID:
22308468. PMCID:
PMC3277536.
Article
99. Amodio DM, Frith CD. 2006; Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 7:268–77. DOI:
10.1038/nrn1884. PMID:
16552413.
Article
100. Döhnel K, Schuwerk T, Meinhardt J, Sodian B, Hajak G, Sommer M. 2012; Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning. Neuroimage. 60:1652–61. DOI:
10.1016/j.neuroimage.2012.01.073. PMID:
22300812.
Article
107. Klein-Flügge MC, Kennerley SW, Friston K, Bestmann S. 2016; Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort-reward trade-off. J Neurosci. 36:10002–15. DOI:
10.1523/JNEUROSCI.0292-16.2016. PMID:
27683898. PMCID:
PMC5039251.
Article
109. Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF. 2006; Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw. 19:1302–14. DOI:
10.1016/j.neunet.2006.03.005. PMID:
16949252. PMCID:
PMC2519033.
Article
112. Bassetti C, Mathis J, Gugger M, Lovblad KO, Hess CW. 1996; Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol. 39:471–80. DOI:
10.1002/ana.410390409. PMID:
8619525.
Article
113. Ranson SW. 1937; Some functions of the hypothalamus: Harvey Lecture, December 17, 1936. Bull N Y Acad Med. 13:241–71. PMID:
19312019. PMCID:
PMC1966114.
117. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. 1998; The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 95:322–7. DOI:
10.1073/pnas.95.1.322. PMID:
9419374. PMCID:
PMC18213.
Article
118. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. 1998; Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 92:573–85. DOI:
10.1016/S0092-8674(00)80949-6. PMID:
9491897.
Article
119. Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. 2016; Progressive loss of the orexin neurons reveals dual effects on wakefulness. Sleep. 39:369–77. DOI:
10.5665/sleep.5446. PMID:
26446125. PMCID:
PMC4712398.
Article
122. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L. 2010; Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 13:1526–33. DOI:
10.1038/nn.2682. PMID:
21037585. PMCID:
PMC3174240.
Article
125. Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M. 2013; Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain. 6:59. DOI:
10.1186/1756-6606-6-59. PMID:
24370235. PMCID:
PMC3879646.
Article
127. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. 2016; VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. 19:1356–66. DOI:
10.1038/nn.4377. PMID:
27595385. PMCID:
PMC5519826.
Article
128. Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS. 2016; Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: a study using a knockout mouse model. Neuropharmacology. 106:20–34. DOI:
10.1016/j.neuropharm.2015.12.014. PMID:
26723880.
Article
129. Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG, Hastings MH, Franks NP, Wisden W. 2014; Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol. 24:2838–44. DOI:
10.1016/j.cub.2014.10.019. PMID:
25454592. PMCID:
PMC4252164.
Article
130. Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T. 2013; GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits. 7:192. DOI:
10.3389/fncir.2013.00192. PMID:
24348342. PMCID:
PMC3844858.
Article
132. Lu J, Sherman D, Devor M, Saper CB. 2006; A putative flip-flop switch for control of REM sleep. Nature. 441:589–94. DOI:
10.1038/nature04767. PMID:
16688184.
Article
134. Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. 2014; Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 34:4708–27. DOI:
10.1523/JNEUROSCI.2617-13.2014. PMID:
24672016. PMCID:
PMC3965793.
Article
135. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN. 2015; Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A. 112:584–9. DOI:
10.1073/pnas.1423136112. PMID:
25548191. PMCID:
PMC4299243.
Article
136. Tarun A, Wainstein-Andriano D, Sterpenich V, Bayer L, Perogamvros L, Solms M, Axmacher N, Schwartz S, Van De Ville D. 2020; NREM sleep stages specifically alter dynamical integration of large-scale brain networks. iScience. 24:101923. DOI:
10.1016/j.isci.2020.101923. PMID:
33409474. PMCID:
PMC7773861.
Article
140. Karnani MM, Jackson J, Ayzenshtat I, Hamzehei Sichani A, Manoocheri K, Kim S, Yuste R. 2016; Opening holes in the blanket of inhibition: localized lateral disinhibition by VIP interneurons. J Neurosci. 36:3471–80. DOI:
10.1523/JNEUROSCI.3646-15.2016. PMID:
27013676. PMCID:
PMC4804006.
Article
141. Muñoz W, Tremblay R, Levenstein D, Rudy B. 2017; Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science. 355:954–59. DOI:
10.1126/science.aag2599. PMID:
28254942.
Article
143. Avena-Koenigsberger A, Misic B, Sporns O. 2017; Communication dynamics in complex brain networks. Nat Rev Neurosci. 19:17–33. DOI:
10.1038/nrn.2017.149. PMID:
29238085.
Article
144. Lehembre R, Marie-Aurélie B, Vanhaudenhuyse A, Chatelle C, Cologan V, Leclercq Y, Soddu A, Macq B, Laureys S, Noirhomme Q. 2012; Resting-state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct Neurol. 27:41–7. PMID:
22687166. PMCID:
PMC3812750.
145. Stefan S, Schorr B, Lopez-Rolon A, Kolassa IT, Shock JP, Rosenfelder M, Heck S, Bender A. 2018; Consciousness indexing and outcome prediction with resting-state EEG in severe disorders of consciousness. Brain Topogr. 31:848–62. DOI:
10.1007/s10548-018-0643-x. PMID:
29666960.
Article