Genomics Inform.  2021 Mar;19(1):e9. 10.5808/gi.21026.

Computational evaluation of interactions between olfactory receptor OR2W1 and its ligands

Affiliations
  • 1Department of Pharmacology, Inje University College of Medicine, Busan 47392, Korea

Abstract

Mammalian olfactory receptors are a family of G protein‒coupled receptors (GPCRs) that occupy a large part of the genome. In human genes, olfactory receptors account for more than 40% of all GPCRs. Several types of GPCR structures have been identified, but there is no single olfactory receptor whose structure has been determined experimentally to date. The aim of this study was to model the interactions between an olfactory receptor and its ligands at the molecular level to provide hints on the binding modes between the OR2W1 olfactory receptor and its agonists and inverse agonists. The results demonstrated the modes of ligand binding in a three-dimensional model of OR2W1 and showed a statistically significant difference in binding affinity to the olfactory receptor between agonists and inverse agonists.

Keyword

docking score; homology modeling; molecular docking; olfactory receptor
Full Text Links
  • GNI
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr