Endocrinol Metab.  2021 Feb;36(1):185-195. 10.3803/EnM.2020.835.

Danshen Extracts Prevents Obesity and Activates Mitochondrial Function in Brown Adipose Tissue

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea

Abstract

Background
Danshen has been widely used in oriental medicine to improve body function. The purpose of this study is to investigate the effect of water-soluble Danshen extract (DE) on weight loss and on activation proteins involved in mitochondrial biogenesis in brown adipose tissue (BAT) in obese mice.
Methods
BAT was isolated from 7-week-old male Sprague-Dawley rats, and expression of proteins related to mitochondrial biogenesis was confirmed in both brown preadipocytes and mature brown adipocytes treated with DE. For the in vivo study, low-density lipoprotein receptor knock out mice were divided into three groups and treated for 17 weeks with: standard diet; high fat diet (HFD); HFD+DE. Body weight was measured every week, and oral glucose tolerance test was performed after DE treatment in streptozotocin-induced diabetic mice. To observe the changes in markers related to thermogenesis and adipogenesis in the BAT, white adipose tissue (WAT) and liver of experimental animals, tissues were removed and immediately frozen in liquid nitrogen.
Results
DE increased the expression of uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in brown preadipocytes, and also promoted the brown adipocyte differentiation and mitochondrial function in the mature brown adipocytes. Reactive oxygen species production in brown preadipocytes was increased depending on the concentration of DE. DE activates thermogenesis in BAT and normalizes increased body weight and adipogenesis in the liver due to HFD. Browning of WAT was increased in WAT of DE treatment group.
Conclusion
DE protects against obesity and activates mitochondrial function in BAT.

Keyword

Adipose tissue, brown; Organelle biogenesis; Dan-shen root extract; Thermogenesis; Obesity

Figure

  • Fig. 1 Danshen extracts (DEs) increase the expression of mitochondrial biogenesis-related proteins in brown preadipocyte. (A) The effect of DE on cell proliferation and viability was assessed by using MTS assay. Brown preadipocytes were incubated for 2 days in the presence of various concentrations of DE on 96 well plate. Later, cell viability was measured by enzyme-linked immunosorbent assay. (B) Western blotting analysis of uncoupling protein 1 (UCP1), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and AMP-activated protein kinase (AMPK) activity in brown preadipocyte treated with DE (50 and 100 μg/mL) or vehicle (control) for 24 hours. β-Actin serves as a loading control. (C) Number of mitochondria were visualized by staining with MitoTracker Red 580 (red fluorescence) followed by treating with and without DE (100 μg/mL, 24 hours) and tumor necrosis factor-α (TNF-α; 100 ng/mL, 1 hour) in brown preadipocyte. Bars, 20 μm. (D) The effect of DE on intracellular reactive oxygen species (ROS). Synchronized brown preadipocytes were pretreated with DE (50 and 100 μg/mL, 24 hours). CM-H2DCF-DA emission was recorded using a fluorescence cytometer. The experiments were performed in triplicate and results are expressed as the mean±standard error of mean. p-AMPK, phosphorylated AMPK. aP<0.05 and bP<0.01 statistically significant differences between vehicle and DE groups.

  • Fig. 2 Danshen extracts (DEs) promotes the brown adipocyte differentiation and mitochondrial functions in brown adipocytes. (A) After induction of adipogenesis for 10 days in brown preadipocytes treated with DE (10, 25, 50, 100, and 200 μg/mL) or vehicle (control) for 7 days, Oil Red O staining was performed. Images were obtained with optical microscope at ×200 magnification. (B) Western blot analysis of CCAAT/enhancer binding protein (C/EBP) α and C/EBPβ after induction of adipogenesis of brown preadipocytes for 10 days and treatment with DE (50 and 100 μg/mL) or vehicle (control) for 24 hours. (C) Western blotting analysis of uncoupling protein 1 (UCP1), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and AMP-activated protein kinase (AMPK) activity after induction of adipogenesis of brown preadipocytes for 10 days and treatment with DE (50 and 100 μg/mL) or vehicle (control) for 24 hours. β-Actin serves as a loading control. Total-AMPK (t-AMPK) acts as a loading control for phosphorylated AMPK (p-AMPK). The experiments were performed in triplicate and results are expressed as the mean±standard error of mean. aP<0.05 and bP<0.005 statistically significant differences between vehicle and DE (50 and 100 μg/mL) groups.

  • Fig. 3 Danshen extracts (DEs) reduces weight gain, blood glucose and fatty liver. (A) DE was administrated orally (50 mg/kg on daily) during 17 weeks; Calorie composition of dietary fat (w/wo 0.2% of DE) was described in Methods (high fat [HF]-diet; 60% of calories from fat). Number of animals in each experimental group of animals was five and starting weight was average of 25 g. Weight measurements were performed once a week and indicated the average of weight gain (ΔG)±standard deviation. (B) Streptozotocin (STZ)-induced diabetic mice, DE supplementation significantly decreased blood glucose compared to the STZ+sodium citrate (pH 4.5). (C) DE ameliorate non-alcoholic fatty liver disease through upregulating AMP-activated protein kinase (AMPK) activation in HF fed mice. H&E staining and Western blotting analysis of peroxisome proliferator-activated receptor γ (PPARγ) and AMPK activity in the liver tissue of experimental animals. Images were obtained with optical microscope at ×200 magnification. p-AMPK, phosphorylated AMPK; t-AMPK, total AMPK; HF+DE, high fat diet supplemented with 0.2% DE. aP<0.05 statistically significant differences between HF group vs. HF+DE groups; bP<0.01; cP<0.005.

  • Fig. 4 Danshen extracts (DEs) activate brown adipose tissue (BAT) metabolism and browning of white adipose tissue (WAT) in obese mice. (A) H&E staining of BAT from each experiment groups. Scale bars, 100 μm. The changes in number of cells of BAT was also measured. (B) Protein levels in interscapular BAT of key genes involved in BAT metabolism were analysis by using the Western blotting. β-Actin serves as a loading control. All animal experiments were measured at 17 weeks in obese mice with or without 0.2% of DE supplement. (C) Analysis of mRNA expression of key genes involved in browning of WAT. UCP1, uncoupling protein 1; PGC-1α, proliferator-activated receptor gamma coactivator 1-alpha; p-AMPK, phosphorylated AMP-activated protein kinase; PPARγ, peroxisome proliferator-activated receptor γ; HF, high fat; Prdm16, PR domain containing 16. aP<0.005 vs. normal; bP<0.01 vs. HF; cP<0.01, dP<0.001 statistically significant differences between HF group vs. HF+DE groups; eP<0.05 vs. normal; fP<0.05 and gP<0.01 vs. HF.


Reference

1. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world: a growing challenge. N Engl J Med. 2007; 356:213–5.
Article
2. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005; 307:373–5.
Article
3. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004; 84:277–359.
Article
4. Himms-Hagen J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 1990; 4:2890–8.
Article
5. Dulloo AG, Miller DS. Energy balance following sympathetic denervation of brown adipose tissue. Can J Physiol Pharmacol. 1984; 62:235–40.
Article
6. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004; 350:664–71.
Article
7. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92:829–39.
Article
8. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006; 3:333–41.
Article
9. Bouillaud F, Ricquier D, Thibault J, Weissenbach J. Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc Natl Acad Sci U S A. 1985; 82:445–8.
Article
10. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene: a link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem. 2001; 276:1486–93.
11. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004; 119:121–35.
Article
12. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009; 20:98–105.
13. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A. 2002; 99:15983–7.
Article
14. Huypens P, Quartier E, Pipeleers D, Van de Casteele M. Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur J Pharmacol. 2005; 518:90–5.
Article
15. Farmer SR. Obesity: be cool, lose weight. Nature. 2009; 458:839–40.
16. Cho YH, Ku CR, Hong ZY, Heo JH, Kim EH, Choi DH, et al. Therapeutic effects of water soluble danshen extracts on atherosclerosis. Evid Based Complement Alternat Med. 2013; 2013:623639.
Article
17. Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H, et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther. 2008; 117:280–95.
Article
18. Shiao MS, Chiu JJ, Chang BW, Wang J, Jen WP, Wu YJ, et al. In search of antioxidants and anti-atherosclerotic agents from herbal medicines. Biofactors. 2008; 34:147–57.
Article
19. Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR. Beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem. 1999; 274:34795–802.
20. Miranda S, Gonzalez-Rodriguez A, Revuelta-Cervantes J, Rondinone CM, Valverde AM. Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection against apoptosis induced by pro- and anti-inflammatory stimuli. Cell Signal. 2010; 22:645–59.
Article
21. Hong JM, Park CS, Nam-Goong IS, Kim YS, Lee JC, Han MW, et al. Curcumin enhances docetaxel-induced apoptosis of 8505C anaplastic thyroid carcinoma cells. Endocrinol Metab (Seoul). 2014; 29:54–61.
Article
22. Tedesco L, Valerio A, Cervino C, Cardile A, Pagano C, Vettor R, et al. Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes. 2008; 57:2028–36.
Article
23. Zhou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol. 2005; 45:1345–59.
Article
24. Cheng TO. Cardiovascular effects of Danshen. Int J Cardiol. 2007; 121:9–22.
Article
25. Kelly LJ, Vicario PP, Thompson GM, Candelore MR, Doebber TW, Ventre J, et al. Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP1, UCP-2, UCP-3) gene expression. Endocrinology. 1998; 139:4920–7.
26. Palou A, Pico C, Bonet ML, Oliver P. The uncoupling protein, thermogenin. Int J Biochem Cell Biol. 1998; 30:7–11.
Article
27. Wolf G. Brown adipose tissue: the molecular mechanism of its formation. Nutr Rev. 2009; 67:167–71.
Article
28. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009; 9:203–9.
Article
29. Ortega SP, Chouchani ET, Boudina S. Stress turns on the heat: regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte. 2017; 6:56–61.
Article
30. Evans D, Minouchehr S, Hagemann G, Mann WA, Wendt D, Wolf A, et al. Frequency of and interaction between polymorphisms in the beta3-adrenergic receptor and in uncoupling proteins 1 and 2 and obesity in Germans. Int J Obes Relat Metab Disord. 2000; 24:1239–45.
31. Upadhyay SK, Eckel-Mahan KL, Mirbolooki MR, Tjong I, Griffey SM, Schmunk G, et al. Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proc Natl Acad Sci U S A. 2013; 110:E2239–48.
Article
32. Matthias A, Ohlson KB, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem. 2000; 275:25073–81.
33. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006; 30:145–51.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr