Ann Lab Med.  2021 Mar;41(2):129-138. 10.3343/alm.2021.41.2.129.

Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19

Affiliations
  • 1Departments of Biochemistry , All India Institute of Medical Sciences, Jodhpur, India
  • 2Departments of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, India

Abstract

Since its first report in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly emerged as a pandemic affecting nearly all countries worldwide. As the COVID-19 pandemic progresses, the need to identify genetic risk factors for susceptibility to this serious illness has emerged. Host genetic factors, along with other risk factors may help determine susceptibility to respiratory tract infections. It is hypothesized that the ACE2 gene, encoding angiotensin-converting enzyme 2 (ACE2), is a genetic risk factor for SARS-CoV-2 infection and is required by the virus to enter cells. Together with ACE2, transmembrane protease serine 2 (TMPRSS2) and dipeptidyl peptidase-4 (DPP4) also play an important role in disease severity. Evaluating the role of genetic variants in determining the direction of respiratory infections will help identify potential drug target candidates for further study in COVID-19 patients. We have summarized the latest reports demonstrating that ACE2 variants, their expression, and epigenetic factors may influence an individual’s susceptibility to SARSCoV-2 infection and disease outcome.

Keyword

Angiotensin-converting enzyme 2 (ACE2) variants; Transmembrane protease; Serine 2 (TMPRSS2); Epigenetics; COVID-19; SARS-CoV-2 infection

Cited by  2 articles

Comparison of SARS-CoV-2 Antibody Responses and Seroconversion in COVID-19 Patients Using Twelve Commercial Immunoassays
Sojeong Yun, Ji Hyeong Ryu, Joo Hee Jang, Hyunjoo Bae, Seung-Hyo Yoo, Ae-Ran Choi, Sung Jin Jo, Jihyang Lim, Jehoon Lee, Hyejin Ryu, Sung-Yeon Cho, Dong-Gun Lee, Jongmin Lee, Seok Chan Kim, Yeon-Joon Park, Hyeyoung Lee, Eun-Jee Oh
Ann Lab Med. 2021;41(6):577-587.    doi: 10.3343/alm.2021.41.6.577.

Incidence Evaluation of SARS-CoV-2 Variants in the Ulsan Area, Korea, Using PowerChek SARS-CoV-2 S-gene Mutation Detection Kit: A Pilot Study
Sang Hyuk Park, Hyun-Ki Kim, Hang Kang, Jung Heon Kim, Jaeseung Lee, Ji-Hun Lim, Seon-Ho Lee, Joseph Jeong
Ann Lab Med. 2022;42(3):363-366.    doi: 10.3343/alm.2022.42.3.363.


Reference

1. Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. 2020; Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann Lab Med. 40:351–60. DOI: 10.3343/alm.2020.40.5.351. PMID: 32237288. PMCID: PMC7169629.
Article
2. Mitra P, Misra S, Sharma P. 2020; COVID-19 pandemic in India: what lies ahead. Ind J Clin Biochem. 35:257–9. DOI: 10.1007/s12291-020-00886-6. PMID: 32313407. PMCID: PMC7167534.
Article
3. Sung H, Roh KH, Hong KH, Seong MW, Ryoo N, Kim HS, et al. 2020; COVID-19 molecular testing in Korea: practical essentials and answers from experts based on experiences of emergency use authorization assays. Ann Lab Med. 40:439–47. DOI: 10.3343/alm.2020.40.6.439. PMID: 32539299.
Article
4. Mitra P, Suri S, Goyal T, Misra R, Singh K, Garg MK, et al. 2020; Association of comorbidities with coronavirus disease 2019: a review. Ann Natl Acad Med Sci (India). 56:102–11. DOI: 10.1055/s-0040-1714159.
Article
5. WHO. Coronavirus disease (COVID-19) dashboard. https://covid19.who.int. Updated on Jul 2020.
6. Lingeswaran M, Goyal T, Ghosh R, Suri S, Mitra P, Misra S, et al. 2020; Inflammation, immunity and immunogenetics in COVID-19: a narrative review. Indian J Clin Biochem. 35:260–73. DOI: 10.1007/s12291-020-00897-3. PMID: 32641873. PMCID: PMC7275846.
Article
7. Lacoma A, Mateo L, Blanco I, Méndez MJ, Rodrigo C, Latorre I, et al. 2019; Impact of host genetics and biological response modifiers on respiratory tract infections. Front Immunol. 10:1013. DOI: 10.3389/fimmu.2019.01013. PMID: 31134083. PMCID: PMC6513887.
Article
8. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, et al. 2020; ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 1–3. DOI: 10.1101/2020.04.03.20047977.
9. Chen YY, Zhang P, Zhou XM, Liu D, Zhong JC, Zhang CJ, et al. 2018; Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J Clin Pharm Ther. 43:189–95. DOI: 10.1111/jcpt.12625. PMID: 28895159.
10. Patel SK, Wai B, Ord M, MacIsaac RJ, Grant S, Velkoska E, et al. 2012; Association of ACE2 genetic variants with blood pressure, left ventricular mass, and cardiac function in Caucasians with type 2 diabetes. Am J Hypertens. 25:216–22. DOI: 10.1038/ajh.2011.188. PMID: 21993363.
Article
11. Zhang SF, Tuo JL, Huang XB, Zhu X, Zhang DM, Zhou K, et al. 2018; Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou. PLoS One. 13:e0191789. DOI: 10.1371/journal.pone.0191789. PMID: 29377913. PMCID: PMC5788356.
Article
12. Hu B, Ge X, Wang LF, Shi Z. 2015; Bat origin of human coronaviruses. Virol J. 12:221. DOI: 10.1186/s12985-015-0422-1. PMID: 26689940. PMCID: PMC4687304.
Article
13. Pyrc K, Berkhout B, van der Hoek L. 2007; The novel human coronaviruses NL63 and HKU1. J Virol. 81:3051–7. DOI: 10.1128/JVI.01466-06. PMID: 17079323. PMCID: PMC1866027.
Article
14. Devaux CA, Rolain JM, Raoult D. 2020; ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 53:425–35. DOI: 10.1016/j.jmii.2020.04.015. PMID: 32414646. PMCID: PMC7201239.
Article
15. Ye J, Zhang B, Xu J, Chang Q, McNutt MA, Korteweg C, et al. 2007; Molecular pathology in the lungs of severe acute respiratory syndrome patients. Am J Pathol. 170:538–45. DOI: 10.2353/ajpath.2007.060469. PMID: 17255322. PMCID: PMC1851867.
Article
16. To KF, Tong JH, Chan PK, Au FW, Chim SS, Chan KC, et al. 2004; Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J Pathol. 202:157–63. DOI: 10.1002/path.1510. PMID: 14743497. PMCID: PMC7167900.
Article
17. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, et al. 2003; Lung pathology of fatal severe acute respiratory syndrome. Lancet. 361:1773–8. DOI: 10.1016/S0140-6736(03)13413-7.
Article
18. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. 2004; Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–7. DOI: 10.1002/path.1570. PMID: 15141377. PMCID: PMC7167720.
Article
19. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. 2000; A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 275:33238–43. DOI: 10.1074/jbc.M002615200. PMID: 10924499.
20. Patel VB, Zhong JC, Grant MB, Oudit GY. 2016; Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res. 118:1313–26. DOI: 10.1161/CIRCRESAHA.116.307708. PMID: 27081112. PMCID: PMC4939482.
Article
21. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. 2002; Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 277:14838–43. DOI: 10.1074/jbc.M200581200. PMID: 11815627.
Article
22. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. 2020; Angiotensin converting Enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 126:1456–74. DOI: 10.1161/CIRCRESAHA.120.317015. PMID: 32264791. PMCID: PMC7188049.
23. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020; Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 367:1444–8. DOI: 10.1126/science.abb2762. PMID: 32132184. PMCID: PMC7164635.
Article
24. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–4. DOI: 10.1038/nature02145. PMID: 14647384. PMCID: PMC7095016.
Article
25. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020; Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181:281–92. e6. DOI: 10.1016/j.cell.2020.02.058. PMID: 32155444. PMCID: PMC7102599.
Article
26. Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, et al. 2020; Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 47:4383–92. DOI: 10.1007/s11033-020-05478-4. PMID: 32410141. PMCID: PMC7224351.
Article
27. Chen Y, Guo Y, Pan Y, Zhao ZJ. 2020; Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 525:135–40. DOI: 10.1016/j.bbrc.2020.02.071. PMID: 32081428. PMCID: PMC7092824.
Article
28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020; A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–3. DOI: 10.1038/s41586-020-2012-7. PMID: 32015507. PMCID: PMC7095418.
29. Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH, et al. 2020; Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 22:221–5. DOI: 10.1016/j.micinf.2020.03.003. PMID: 32199943. PMCID: PMC7156207.
Article
30. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. 2005; Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24:1634–43. DOI: 10.1038/sj.emboj.7600640. PMID: 15791205. PMCID: PMC1142572.
Article
31. Wan Y, Shang J, Graham R, Baric RS, Li F. 2020; Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:e00127–20. DOI: 10.1128/JVI.00127-20. PMID: 31996437. PMCID: PMC7081895.
Article
32. Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. 2006; Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 48:914–20. DOI: 10.1161/01.HYP.0000244543.91937.79. PMID: 17000927.
Article
33. Ciaglia E, Vecchione C, Puca AA. 2020; COVID-19 infection and circulating ACE2 levels: protective role in women and children. Front Pediatr. 8:206. DOI: 10.3389/fped.2020.00206. PMID: 32391299. PMCID: PMC7192005.
Article
34. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, et al. 2020; Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol. 10.1002/jmv.25832. DOI: 10.1002/jmv.25832. PMID: 32249956. PMCID: PMC7228372.
Article
35. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. 2020; Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30:343–55. DOI: 10.1038/s41422-020-0305-x. PMID: 32231345. PMCID: PMC7104723.
36. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. 2020; Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323:1061–9. DOI: 10.1001/jama.2020.1585. PMID: 32031570. PMCID: PMC7042881.
Article
37. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. 2020; Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 382:1708–20. DOI: 10.1056/NEJMoa2002032. PMID: 32109013. PMCID: PMC7092819.
38. Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. 2020; Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 19:e13168. DOI: 10.1111/acel.13168.
Article
39. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. 2020; Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 6:11. DOI: 10.1038/s41421-020-0147-1. PMID: 32133153. PMCID: PMC7040011.
Article
40. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. 2020; Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 202:756–9. DOI: 10.1164/rccm.202001-0179LE. PMID: 32663409. PMCID: PMC7462411.
Article
41. Li M, Li L, Zhang Y, Wang X. 2020; Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 9:45. DOI: 10.1186/s40249-020-00662-x. PMID: 32345362. PMCID: PMC7186534.
Article
42. Bénéteau-Burnat B, Baudin B, Morgant G, Baumann FC, Giboudeau J. 1990; Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. Clin Chem. 36:344–6. DOI: 10.1093/clinchem/36.2.344. PMID: 2154343.
Article
43. Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, et al. 2009; A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 395:210–22. DOI: 10.1016/j.virol.2009.09.023. PMID: 19853271. PMCID: PMC2787736.
Article
44. Ghadhanfar E, Alsalem A, Al-Kandari S, Naser J, Babiker F, Al-Bader M. 2017; The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reprod Biol Endocrinol. 15:97. DOI: 10.1186/s12958-017-0316-8. PMID: 29321064. PMCID: PMC6389120.
Article
45. NCBI. TMPRSS2 transmembrane serine protease 2 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/7113. Updated on 20 Sep 2020.
46. Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, et al. 2014; The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 4:1310–25. DOI: 10.1158/2159-8290.CD-13-1010. PMID: 25122198. PMCID: PMC4409786.
Article
47. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. 2020; SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–80. e8. DOI: 10.1016/j.cell.2020.02.052. PMID: 32142651. PMCID: PMC7102627.
Article
48. Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. 2006; Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 80:9896–8. DOI: 10.1128/JVI.01118-06. PMID: 16973594. PMCID: PMC1617224.
49. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011; A. transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 85:873–82. DOI: 10.1128/JVI.02062-10. PMID: 21068237. PMCID: PMC3020023.
Article
50. Watanabe R, Matsuyama S, Shirato K, Maejima M, Fukushi S, Morikawa S, et al. 2008; Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein. J Virol. 82:11985–91. DOI: 10.1128/JVI.01412-08. PMID: 18786990. PMCID: PMC2583654.
Article
51. Belouzard S, Chu VC, Whittaker GR. 2009; Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci. 106:5871–6. DOI: 10.1073/pnas.0809524106. PMID: 19321428. PMCID: PMC2660061.
Article
52. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010; Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 84:12658–64. DOI: 10.1128/JVI.01542-10. PMID: 20926566. PMCID: PMC3004351.
Article
53. Kam YW, Okumura Y, Kido H, Ng LFP, Bruzzone R, Altmeyer R. 2009; Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One. 4:e7870. DOI: 10.1371/journal.pone.0007870. PMID: 19924243. PMCID: PMC2773421.
Article
54. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. 2014; TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 88:1293–307. DOI: 10.1128/JVI.02202-13. PMID: 24227843. PMCID: PMC3911672.
Article
55. Asselta R, Paraboschi EM, Mantovani A, Duga S. 2020; ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 12:10087–98. DOI: 10.18632/aging.103415. PMID: 32501810. PMCID: PMC7346072.
56. FitzGerald LM, Agalliu I, Johnson K, Miller MA, Kwon EM, Hurtado-Coll A, et al. 2008; Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer. 8:230. DOI: 10.1186/1471-2407-8-230. PMID: 18694509. PMCID: PMC2519091.
Article
57. Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, et al. 2013; Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol. 27:2028–40. DOI: 10.1210/me.2013-1098. PMID: 24109594. PMCID: PMC5426606.
58. Senapati S, Kumar S, Singh AK, Banerjee P, Bhagavatula S. 2020; Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human. J Genet. 99:53. DOI: 10.1007/s12041-020-01217-7. PMID: 32661206. PMCID: PMC7280172.
Article
59. Vankadari N, Wilce JA. 2020; Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 9:601–4. DOI: 10.1080/22221751.2020.1739565. PMID: 32178593. PMCID: PMC7103712.
60. Beutler B. 2004; Innate immunity: an overview. Mol Immunol. 40:845–59. DOI: 10.1016/j.molimm.2003.10.005. PMID: 14698223.
Article
61. Ivashkiv LB, Donlin LT. 2014; Regulation of type I interferon responses. Nat Rev Immunol. 14:36–49. DOI: 10.1038/nri3581. PMID: 24362405. PMCID: PMC4084561.
Article
62. Schneider WM, Chevillotte MD, Rice CM. 2014; Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 32:513–45. DOI: 10.1146/annurev-immunol-032713-120231. PMID: 24555472. PMCID: PMC4313732.
Article
63. García-Sastre A, Biron CA. 2006; Type 1 interferons and the virus-host relationship: a lesson in détente. Science. 312:879–82. DOI: 10.1126/science.1125676. PMID: 16690858.
64. Stender JD, Glass CK. 2013; Epigenomic control of the innate immune response. Curr Opin Pharmacol. 13:582–7. DOI: 10.1016/j.coph.2013.06.002. PMID: 23816801. PMCID: PMC5733719.
Article
65. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. 2000; Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell. 103:667–78. DOI: 10.1016/S0092-8674(00)00169-0.
Article
66. Busslinger M, Tarakhovsky A. 2014; Epigenetic control of immunity. Cold Spring Harb Perspect Biol. 6:a019307. DOI: 10.1101/cshperspect.a019307. PMID: 24890513. PMCID: PMC4031963.
Article
67. Smale ST, Tarakhovsky A, Natoli G. 2014; Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol. 32:489–511. DOI: 10.1146/annurev-immunol-031210-101303. PMID: 24555473.
Article
68. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, et al. 2007; Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J. 26:412–23. DOI: 10.1038/sj.emboj.7601516. PMID: 17245431. PMCID: PMC1783449.
Article
69. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, et al. 2020; ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J Infect Dis. 222:556–63. DOI: 10.1093/infdis/jiaa332. PMID: 32526012. PMCID: PMC7377288.
Article
70. Sawalha AH, Zhao M, Coit P, Lu Q. 2020; Epigenetic dysregulation of ACE2 and interferonregulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol. 215:108410. DOI: 10.1016/j.clim.2020.108410. PMID: 32276140. PMCID: PMC7139239.
Article
71. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, et al. 2004; Identification of virus-encoded microRNAs. Science. 304:734–6. DOI: 10.1126/science.1096781. PMID: 15118162.
Article
72. Saçar Demirci MD, Adan A. 2020; Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ. 8:e9369. DOI: 10.7717/peerj.9369. PMID: 32547891. PMCID: PMC7278893.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr