3. Sung H, Roh KH, Hong KH, Seong MW, Ryoo N, Kim HS, et al. 2020; COVID-19 molecular testing in Korea: practical essentials and answers from experts based on experiences of emergency use authorization assays. Ann Lab Med. 40:439–47. DOI:
10.3343/alm.2020.40.6.439. PMID:
32539299.
Article
4. Mitra P, Suri S, Goyal T, Misra R, Singh K, Garg MK, et al. 2020; Association of comorbidities with coronavirus disease 2019: a review. Ann Natl Acad Med Sci (India). 56:102–11. DOI:
10.1055/s-0040-1714159.
Article
6. Lingeswaran M, Goyal T, Ghosh R, Suri S, Mitra P, Misra S, et al. 2020; Inflammation, immunity and immunogenetics in COVID-19: a narrative review. Indian J Clin Biochem. 35:260–73. DOI:
10.1007/s12291-020-00897-3. PMID:
32641873. PMCID:
PMC7275846.
Article
7. Lacoma A, Mateo L, Blanco I, Méndez MJ, Rodrigo C, Latorre I, et al. 2019; Impact of host genetics and biological response modifiers on respiratory tract infections. Front Immunol. 10:1013. DOI:
10.3389/fimmu.2019.01013. PMID:
31134083. PMCID:
PMC6513887.
Article
8. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, et al. 2020;
ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 1–3. DOI:
10.1101/2020.04.03.20047977.
9. Chen YY, Zhang P, Zhou XM, Liu D, Zhong JC, Zhang CJ, et al. 2018; Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J Clin Pharm Ther. 43:189–95. DOI:
10.1111/jcpt.12625. PMID:
28895159.
10. Patel SK, Wai B, Ord M, MacIsaac RJ, Grant S, Velkoska E, et al. 2012; Association of ACE2 genetic variants with blood pressure, left ventricular mass, and cardiac function in Caucasians with type 2 diabetes. Am J Hypertens. 25:216–22. DOI:
10.1038/ajh.2011.188. PMID:
21993363.
Article
11. Zhang SF, Tuo JL, Huang XB, Zhu X, Zhang DM, Zhou K, et al. 2018; Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou. PLoS One. 13:e0191789. DOI:
10.1371/journal.pone.0191789. PMID:
29377913. PMCID:
PMC5788356.
Article
14. Devaux CA, Rolain JM, Raoult D. 2020; ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 53:425–35. DOI:
10.1016/j.jmii.2020.04.015. PMID:
32414646. PMCID:
PMC7201239.
Article
16. To KF, Tong JH, Chan PK, Au FW, Chim SS, Chan KC, et al. 2004; Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J Pathol. 202:157–63. DOI:
10.1002/path.1510. PMID:
14743497. PMCID:
PMC7167900.
Article
17. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, et al. 2003; Lung pathology of fatal severe acute respiratory syndrome. Lancet. 361:1773–8. DOI:
10.1016/S0140-6736(03)13413-7.
Article
18. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. 2004; Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–7. DOI:
10.1002/path.1570. PMID:
15141377. PMCID:
PMC7167720.
Article
19. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. 2000; A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 275:33238–43. DOI:
10.1074/jbc.M002615200. PMID:
10924499.
21. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. 2002; Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 277:14838–43. DOI:
10.1074/jbc.M200581200. PMID:
11815627.
Article
22. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. 2020; Angiotensin converting Enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 126:1456–74. DOI:
10.1161/CIRCRESAHA.120.317015. PMID:
32264791. PMCID:
PMC7188049.
24. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–4. DOI:
10.1038/nature02145. PMID:
14647384. PMCID:
PMC7095016.
Article
26. Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, et al. 2020; Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 47:4383–92. DOI:
10.1007/s11033-020-05478-4. PMID:
32410141. PMCID:
PMC7224351.
Article
28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020; A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–3. DOI:
10.1038/s41586-020-2012-7. PMID:
32015507. PMCID:
PMC7095418.
29. Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH, et al. 2020; Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 22:221–5. DOI:
10.1016/j.micinf.2020.03.003. PMID:
32199943. PMCID:
PMC7156207.
Article
31. Wan Y, Shang J, Graham R, Baric RS, Li F. 2020; Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:e00127–20. DOI:
10.1128/JVI.00127-20. PMID:
31996437. PMCID:
PMC7081895.
Article
32. Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. 2006; Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 48:914–20. DOI:
10.1161/01.HYP.0000244543.91937.79. PMID:
17000927.
Article
34. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, et al. 2020; Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol. 10.1002/jmv.25832. DOI:
10.1002/jmv.25832. PMID:
32249956. PMCID:
PMC7228372.
Article
35. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. 2020; Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30:343–55. DOI:
10.1038/s41422-020-0305-x. PMID:
32231345. PMCID:
PMC7104723.
36. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. 2020; Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323:1061–9. DOI:
10.1001/jama.2020.1585. PMID:
32031570. PMCID:
PMC7042881.
Article
37. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. 2020; Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 382:1708–20. DOI:
10.1056/NEJMoa2002032. PMID:
32109013. PMCID:
PMC7092819.
38. Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. 2020; Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 19:e13168. DOI:
10.1111/acel.13168.
Article
39. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. 2020; Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 6:11. DOI:
10.1038/s41421-020-0147-1. PMID:
32133153. PMCID:
PMC7040011.
Article
42. Bénéteau-Burnat B, Baudin B, Morgant G, Baumann FC, Giboudeau J. 1990; Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. Clin Chem. 36:344–6. DOI:
10.1093/clinchem/36.2.344. PMID:
2154343.
Article
43. Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, et al. 2009; A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 395:210–22. DOI:
10.1016/j.virol.2009.09.023. PMID:
19853271. PMCID:
PMC2787736.
Article
44. Ghadhanfar E, Alsalem A, Al-Kandari S, Naser J, Babiker F, Al-Bader M. 2017; The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reprod Biol Endocrinol. 15:97. DOI:
10.1186/s12958-017-0316-8. PMID:
29321064. PMCID:
PMC6389120.
Article
46. Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, et al. 2014; The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 4:1310–25. DOI:
10.1158/2159-8290.CD-13-1010. PMID:
25122198. PMCID:
PMC4409786.
Article
47. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. 2020; SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–80. e8. DOI:
10.1016/j.cell.2020.02.052. PMID:
32142651. PMCID:
PMC7102627.
Article
48. Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. 2006; Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 80:9896–8. DOI:
10.1128/JVI.01118-06. PMID:
16973594. PMCID:
PMC1617224.
49. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011; A. transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 85:873–82. DOI:
10.1128/JVI.02062-10. PMID:
21068237. PMCID:
PMC3020023.
Article
50. Watanabe R, Matsuyama S, Shirato K, Maejima M, Fukushi S, Morikawa S, et al. 2008; Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein. J Virol. 82:11985–91. DOI:
10.1128/JVI.01412-08. PMID:
18786990. PMCID:
PMC2583654.
Article
51. Belouzard S, Chu VC, Whittaker GR. 2009; Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci. 106:5871–6. DOI:
10.1073/pnas.0809524106. PMID:
19321428. PMCID:
PMC2660061.
Article
52. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010; Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 84:12658–64. DOI:
10.1128/JVI.01542-10. PMID:
20926566. PMCID:
PMC3004351.
Article
53. Kam YW, Okumura Y, Kido H, Ng LFP, Bruzzone R, Altmeyer R. 2009; Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One. 4:e7870. DOI:
10.1371/journal.pone.0007870. PMID:
19924243. PMCID:
PMC2773421.
Article
54. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. 2014; TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 88:1293–307. DOI:
10.1128/JVI.02202-13. PMID:
24227843. PMCID:
PMC3911672.
Article
55. Asselta R, Paraboschi EM, Mantovani A, Duga S. 2020;
ACE2 and
TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 12:10087–98. DOI:
10.18632/aging.103415. PMID:
32501810. PMCID:
PMC7346072.
56. FitzGerald LM, Agalliu I, Johnson K, Miller MA, Kwon EM, Hurtado-Coll A, et al. 2008; Association of
TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer. 8:230. DOI:
10.1186/1471-2407-8-230. PMID:
18694509. PMCID:
PMC2519091.
Article
57. Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, et al. 2013; Androgen regulation of the
TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol. 27:2028–40. DOI:
10.1210/me.2013-1098. PMID:
24109594. PMCID:
PMC5426606.
58. Senapati S, Kumar S, Singh AK, Banerjee P, Bhagavatula S. 2020; Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human. J Genet. 99:53. DOI:
10.1007/s12041-020-01217-7. PMID:
32661206. PMCID:
PMC7280172.
Article
59. Vankadari N, Wilce JA. 2020; Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 9:601–4. DOI:
10.1080/22221751.2020.1739565. PMID:
32178593. PMCID:
PMC7103712.
63. García-Sastre A, Biron CA. 2006; Type 1 interferons and the virus-host relationship: a lesson in détente. Science. 312:879–82. DOI:
10.1126/science.1125676. PMID:
16690858.
65. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. 2000; Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell. 103:667–78. DOI:
10.1016/S0092-8674(00)00169-0.
Article
68. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, et al. 2007; Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J. 26:412–23. DOI:
10.1038/sj.emboj.7601516. PMID:
17245431. PMCID:
PMC1783449.
Article
69. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, et al. 2020; ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J Infect Dis. 222:556–63. DOI:
10.1093/infdis/jiaa332. PMID:
32526012. PMCID:
PMC7377288.
Article
70. Sawalha AH, Zhao M, Coit P, Lu Q. 2020; Epigenetic dysregulation of ACE2 and interferonregulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol. 215:108410. DOI:
10.1016/j.clim.2020.108410. PMID:
32276140. PMCID:
PMC7139239.
Article
71. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, et al. 2004; Identification of virus-encoded microRNAs. Science. 304:734–6. DOI:
10.1126/science.1096781. PMID:
15118162.
Article