2. Larkman AU. 1991; Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol. 306:332–343. DOI:
10.1002/cne.903060209. PMID:
1711059.
Article
4. Marder E, O'Leary T, Shruti S. 2014; Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci. 37:329–346. DOI:
10.1146/annurev-neuro-071013-013958. PMID:
25032499.
Article
7. Cho KH, Jang HJ, Jo YH, Singer W, Rhie DJ. 2012; Cholinergic induction of input-specific late-phase LTP via localized Ca
2+ release in the visual cortex. J Neurosci. 32:4520–4530. DOI:
10.1523/JNEUROSCI.4577-11.2012. PMID:
22457499. PMCID:
PMC6622052.
8. Joo K, Cho KH, Youn SH, Jang HJ, Rhie DJ. 2019; Layer-specific involvement of endocannabinoid signaling in muscarinic-induced long-term depression in layer 2/3 pyramidal neurons of rat visual cortex. Brain Res. 1712:124–131. DOI:
10.1016/j.brainres.2019.02.007. PMID:
30753818.
Article
9. Jang HJ, Cho KH, Park SW, Kim MJ, Yoon SH, Rhie DJ. 2012; Layer-specific serotonergic facilitation of IPSC in layer 2/3 pyramidal neurons of the visual cortex. J Neurophysiol. 107:407–416. DOI:
10.1152/jn.00535.2011. PMID:
22013240.
Article
12. Ongür D, Price JL. 2000; The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 10:206–219. DOI:
10.1093/cercor/10.3.206. PMID:
10731217.
13. Dalley JW, Cardinal RN, Robbins TW. 2004; Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 28:771–784. DOI:
10.1016/j.neubiorev.2004.09.006. PMID:
15555683.
Article
17. Gerfen CR, Clavier RM. 1979; Neural inputs to the prefrontal agranular insular cortex in the rat: horseradish peroxidase study. Brain Res Bull. 4:347–353. DOI:
10.1016/S0361-9230(79)80012-X. PMID:
90546.
Article
18. Gabbott PL, Warner TA, Jays PR, Bacon SJ. 2003; Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res. 993:59–71. DOI:
10.1016/j.brainres.2003.08.056. PMID:
14642831.
Article
20. Aggleton JP, Wright NF, Rosene DL, Saunders RC. 2015; Complementary patterns of direct amygdala and hippocampal projections to the macaque prefrontal cortex. Cereb Cortex. 25:4351–4373. DOI:
10.1093/cercor/bhv019. PMID:
25715284. PMCID:
PMC4612443.
Article
21. Kuramoto E, Iwai H, Yamanaka A, Ohno S, Seki H, Tanaka YR, Furuta T, Hioki H, Goto T. 2017; Dorsal and ventral parts of thalamic nucleus submedius project to different areas of rat orbitofrontal cortex: a single neuron-tracing study using virus vectors. J Comp Neurol. 525:3821–3839. DOI:
10.1002/cne.24306. PMID:
28863230.
Article
25. Zhong P, Liu W, Gu Z, Yan Z. 2008; Serotonin facilitates long-term depression induction in prefrontal cortex
via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization. J Physiol. 586:4465–4479. DOI:
10.1113/jphysiol.2008.155143. PMID:
18653660. PMCID:
PMC2614015.
26. Martin HG, Bernabeu A, Lassalle O, Bouille C, Beurrier C, Pelissier-Alicot AL, Manzoni OJ. 2015; Endocannabinoids mediate muscarinic acetylcholine receptor-dependent long-term depression in the adult medial prefrontal cortex. Front Cell Neurosci. 9:457. DOI:
10.3389/fncel.2015.00457. PMID:
26648844. PMCID:
PMC4664641.
Article
27. Huang CC, Hsu KS. 2010; Activation of muscarinic acetylcholine receptors induces a nitric oxide-dependent long-term depression in rat medial prefrontal cortex. Cereb Cortex. 20:982–996. DOI:
10.1093/cercor/bhp161. PMID:
19666830.
Article
28. Ohashi S, Matsumoto M, Togashi H, Ueno K, Yoshioka M. 2003; The serotonergic modulation of synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway. Neurosci Lett. 342:179–182. DOI:
10.1016/S0304-3940(03)00293-3. PMID:
12757894.
Article
29. Paxinos G, Watson C. 2007. The rat brain in stereotaxic coordinates. 6th ed. Academic Press/Elsevier;Amsterdam:
30. Kay AR, Alfonso A, Alford S, Cline HT, Holgado AM, Sakmann B, Snitsarev VA, Stricker TP, Takahashi M, Wu LG. 1999; Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron. 24:809–817. DOI:
10.1016/S0896-6273(00)81029-6. PMID:
10624945.
Article
33. Spruston N. 2008; Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 9:206–221. DOI:
10.1038/nrn2286. PMID:
18270515.
Article
34. Berthoux C, Barre A, Bockaert J, Marin P, Bécamel C. 2019; Sustained activation of postsynaptic 5-HT
2A receptors gates plasticity at prefrontal cortex synapses. Cereb Cortex. 29:1659–1669. DOI:
10.1093/cercor/bhy064. PMID:
29917056.
35. Kim HS, Jang HJ, Cho KH, Hahn SJ, Kim MJ, Yoon SH, Jo YH, Kim MS, Rhie DJ. 2006; Serotonin inhibits the induction of NMDA receptor-dependent long-term potentiation in the rat primary visual cortex. Brain Res. 1103:49–55. DOI:
10.1016/j.brainres.2006.05.046. PMID:
16784733.
Article
36. Jang HJ, Cho KH, Park SW, Kim MJ, Yoon SH, Rhie DJ. 2010; Effects of serotonin on the induction of long-term depression in the rat visual cortex. Korean J Physiol Pharmacol. 14:337–343. DOI:
10.4196/kjpp.2010.14.5.337. PMID:
21165334. PMCID:
PMC2997421.
Article
37. Park SW, Jang HJ, Cho KH, Kim MJ, Yoon SH, Rhie DJ. 2012; Developmental switch of the serotonergic role in the induction of synaptic long-term potentiation in the rat visual cortex. Korean J Physiol Pharmacol. 16:65–70. DOI:
10.4196/kjpp.2012.16.1.65. PMID:
22416222. PMCID:
PMC3298828.
Article
38. Kojic L, Dyck RH, Gu Q, Douglas RM, Matsubara J, Cynader MS. 2000; Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proc Natl Acad Sci U S A. 97:1841–1844. DOI:
10.1073/pnas.97.4.1841. PMID:
10677543. PMCID:
PMC26523.
Article
39. Kojic L, Gu Q, Douglas RM, Cynader MS. 1997; Serotonin facilitates synaptic plasticity in kitten visual cortex: an
in vitro study. Brain Res Dev Brain Res. 101:299–304. DOI:
10.1016/S0165-3806(97)00083-7. PMID:
9263606.
41. Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC. 2000; Immunohistochemical localisation of the 5-HT
2C receptor protein in the rat CNS. Neuropharmacology. 39:123–132. DOI:
10.1016/S0028-3908(99)00086-6. PMID:
10665825.
42. Li QH, Nakadate K, Tanaka-Nakadate S, Nakatsuka D, Cui Y, Watanabe Y. 2004; Unique expression patterns of 5-HT
2A and 5-HT
2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses. J Comp Neurol. 469:128–140. DOI:
10.1002/cne.11004. PMID:
14689478.
43. Barre A, Berthoux C, De Bundel D, Valjent E, Bockaert J, Marin P, Bécamel C. 2016; Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A. 113:E1382–E1391. DOI:
10.1073/pnas.1525586113. PMID:
26903620. PMCID:
PMC4791007.
Article
46. Williams SR, Stuart GJ. 2002; Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science. 295:1907–1910. DOI:
10.1126/science.1067903. PMID:
11884759.
Article
50. Hasselmo ME, McGaughy J. 2004; High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res. 145:207–231. DOI:
10.1016/S0079-6123(03)45015-2. PMID:
14650918.
Article