2. Anderson CJ, Ling X, Schlyer DJ, Cutler CS. 2019. A short history of nuclear medicine. Radiopharmaceutical chemistry. Springer;Cham: p. 11–16. DOI:
10.1007/978-3-319-98947-1_2.
Article
4. L'Annunziata MF. 2007. Radioactivity: introduction and history. Elsevier;Amsterdam:
5. Hertz S, Roberts A. 1946; Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc. 131:81–86. DOI:
10.1001/jama.1946.02870190005002. PMID:
21025609.
8. Cassen B, Curtis L, Reed CW. 1950. A sensitive directional gamma-ray detector. United States Atomic Energy Commission;Oak Ridge, USA: p. 78–81. UCLA-49.
10. Mallard JR. 1987; Hevesy memorial medal lecture 1985. Some call it laziness: I call it deep thought (with apologies to Garfield). Nucl Med Commun. 8:691–710. DOI:
10.1097/00006231-198709000-00001. PMID:
3684109.
11. Kuhl DE, Edwards RQ. 1968; Reorganizing data from transverse section scans of the brain using digital processing. Radiology. 91:975–983. DOI:
10.1148/91.5.975. PMID:
5681332.
Article
12. Nellemann P, Hines H, Braymer W, Muehllehner G, Geagan M. 1995; Performance characteristics of a dual head SPECT scanner with PET capability. IEEE Trans Nucl Sci. 3:1751–1755. DOI:
10.1109/NSSMIC.1995.501924.
Article
16. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. 2007; Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 48:471–480. PMID:
17332626.
18. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. 2011; Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 56:2375–2389. DOI:
10.1088/0031-9155/56/8/004. PMID:
21427485.
Article
19. Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. 2011; Physical performance of the new hybrid PET∕CT Discovery-690. Med Phys. 38:5394–5411. DOI:
10.1118/1.3635220. PMID:
21992359.
Article
22. van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. 2017; Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 44(Suppl 1):4–16. DOI:
10.1007/s00259-017-3727-z. PMID:
28687866. PMCID:
PMC5541089.
Article
23. Son HJ, Oh JS, Roh JH, Seo SW, Oh M, Lee SJ, et al. 2019; Differences in gray and white matter 18F-THK5351 uptake between behavioral-variant frontotemporal dementia and other dementias. Eur J Nucl Med Mol Imaging. 46:357–366. DOI:
10.1007/s00259-018-4125-x. PMID:
30109402.
Article
24. Son HJ, Oh JS, Oh M, Kim SJ, Lee JH, Roh JH, et al. 2020; The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. Eur J Nucl Med Mol Imaging. 47:332–341. DOI:
10.1007/s00259-019-04595-y. PMID:
31811343.
Article
25. Wahl RL, Jacene H, Kasamon Y, Lodge MA. 2009; From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 50 Suppl 1(Suppl 1):122S–150S. DOI:
10.2967/jnumed.108.057307. PMID:
19403881. PMCID:
PMC2755245.
Article
26. Strother SC, Casey ME, Hoffman EJ. 1990; Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans Nucl Sci. 37:783–788. DOI:
10.1109/23.106715.
Article
27. Campagnolo RE, Garderet P, Vacher J. 1979. Tomographie par emetteurs positrons avec mesure de temps de vol. Colloque national sur le traitement du signal. Rennes Cedex;Nice:
30. Laval M, Gariod R, Allemand R, Cormorèche E, Moszynski M. The "LETI" positron tomograph architecture and time-of-flight improvements. Paper presented at: Workshop on Time of Flight Tomography. 1982 May 17-19; St Louis, USA.
31. Yamamoto M, Ficke DC, Ter-Pogossian MM. 1982; Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging. 1:187–192. DOI:
10.1109/TMI.1982.4307571. PMID:
18238274.
Article
32. Budinger TF. 1983; Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 24:73–78. PMID:
6336778.
33. Wong WH. 1988; PET camera performance design evaluation for BGO and BaF2 scintillators (non-time-of-flight). J Nucl Med. 29:338–347. PMID:
3258027.
35. Patterson D. 50 years of computer architecture: from the mainframe CPU to the domain-specific tpu and the open RISC-V instruction set. Paper presented at: 2018 IEEE International Solid - State Circuits Conference - (ISSCC). 2018 Feb 11-15; San Francisco, USA. DOI:
10.1109/ISSCC.2018.8310168.
36. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. 2018; Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 59:3–12. DOI:
10.2967/jnumed.116.184028. PMID:
28935835. PMCID:
PMC5750522.
Article
38. Panin VY, Kehren F, Michel C, Casey M. 2006; Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 25:907–921. DOI:
10.1109/TMI.2006.876171. PMID:
16827491.
Article
39. Takamochi K, Yoshida J, Murakami K, Niho S, Ishii G, Nishimura M, et al. 2005; Pitfalls in lymph node staging with positron emission tomography in non-small cell lung cancer patients. Lung Cancer. 47:235–242. DOI:
10.1016/j.lungcan.2004.08.004. PMID:
15639722.
Article
40. Bellevre D, Blanc Fournier C, Switsers O, Dugué AE, Levy C, Allouache D, et al. 2014; Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems? Eur J Nucl Med Mol Imaging. 41:1103–1112. DOI:
10.1007/s00259-014-2689-7. PMID:
24562642.
Article
41. Kuhnert G, Boellaard R, Sterzer S, Kahraman D, Scheffler M, Wolf J, et al. 2016; Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis. Eur J Nucl Med Mol Imaging. 43:249–258. DOI:
10.1007/s00259-015-3165-8. PMID:
26280981.
Article
42. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. 2012; A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 57:R119–R159. DOI:
10.1088/0031-9155/57/21/R119. PMID:
23073343.
Article
44. Hoffman EJ, Huang SC, Phelps ME. 1979; Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 3:299–308. DOI:
10.1097/00004728-197906000-00001. PMID:
438372.
45. Rousset O, Ma Y, Kamber M, Evans AC. 1993; 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph. 17:373–379. DOI:
10.1016/0895-6111(93)90031-H. PMID:
8306312.
Article
46. Rousset OG, Ma Y, Evans AC. 1998; Correction for partial volume effects in PET: principle and validation. J Nucl Med. 39:904–911. PMID:
9591599.
47. Schafer RW, Mersereau RM, Richards MA. 1981; Constrained iterative restoration algorithms. Proc IEEE. 69:432–450. DOI:
10.1109/PROC.1981.11987.
Article
50. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, et al. 2007; Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. 48:802–810. DOI:
10.2967/jnumed.106.035576. PMID:
17475970.
51. Green PJ. 1990; Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 9:84–93. DOI:
10.1109/42.52985. PMID:
18222753.
Article
52. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. 2011; The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 38:1104–1119. DOI:
10.1007/s00259-011-1745-9. PMID:
21336694.
Article
53. Cysouw MCF, Kramer GM, Schoonmade LJ, Boellaard R, de Vet HCW, Hoekstra OS. 2017; Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 44:2105–2116. DOI:
10.1007/s00259-017-3775-4. PMID:
28776088. PMCID:
PMC5656693.
Article
54. Erlandsson K, Hutton BF. 2010; Partial volume correction in SPECT using anatomical information and iterative FBP. Tsinghua Sci Technol. 15:50–55. DOI:
10.1016/S1007-0214(10)70008-0.
Article
55. Boening G, Pretorius PH, King MA. 2006; Study of relative quantification of Tc-99m with partial volume effect and spillover correction for SPECT oncology imaging. IEEE Trans Nucl Sci. 53:1205–1212. DOI:
10.1109/TNS.2006.871406.
Article
56. Lambrou T, Groves AM, Erlandsson K, Screaton N, Endozo R, Win T, et al. 2011; The importance of correction for tissue fraction effects in lung PET: preliminary findings. Eur J Nucl Med Mol Imaging. 38:2238–2246. DOI:
10.1007/s00259-011-1906-x. PMID:
21874321.
Article
60. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. 2017; EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 44(Suppl 1):17–31. DOI:
10.1007/s00259-017-3740-2. PMID:
28623376. PMCID:
PMC5541084.
Article
61. Ferretti A, Chondrogiannis S, Rampin L, Bellan E, Marzola MC, Grassetto G, et al. 2018; How to harmonize SUVs obtained by hybrid PET/CT scanners with and without point spread function correction. Phys Med Biol. 63:235010. DOI:
10.1088/1361-6560/aaee27. PMID:
30474620.
Article
63. Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. 2015; Intratumor textural heterogeneity on pretreatment (18)F-FDG pET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann Surg Oncol. 22:2746–2754. DOI:
10.1245/s10434-014-4284-3. PMID:
25487968.
Article
64. Kim JW, Oh JS, Roh JL, Kim JS, Choi SH, Nam SY, et al. 2015; Prognostic significance of standardized uptake value and metabolic tumour volume on 18F-FDG PET/CT in oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 42:1353–1361. DOI:
10.1007/s00259-015-3051-4. PMID:
26067088.
Article
65. Ha SC, Oh JS, Roh JL, Moon H, Kim JS, Cho KJ, et al. 2017; Pretreatment tumor SUVmax predicts disease-specific and overall survival in patients with head and neck soft tissue sarcoma. Eur J Nucl Med Mol Imaging. 44:33–40. DOI:
10.1007/s00259-016-3456-8. PMID:
27448574.
Article
66. Lim WS, Oh JS, Roh JL, Kim JS, Kim SJ, Choi SH, et al. 2018; Prediction of distant metastasis and survival in adenoid cystic carcinoma using quantitative 18F-FDG PET/CT measurements. Oral Oncol. 77:98–104. DOI:
10.1016/j.oraloncology.2017.12.013. PMID:
29362133.
67. Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. 1997; MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 44:1161–1166. DOI:
10.1109/23.596981.
Article
68. Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. 2002; The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 49:104–110. DOI:
10.1109/TNS.2002.998689.
Article
69. Schmand M, Eriksson L, Casey ME, Andreaco MS, Melcher C, Wienhard K, et al. 1998; Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT. IEEE Trans Nucl Sci. 45:3000–3006. DOI:
10.1109/23.737656.
Article
70. Spinks TJ, Bloomfield PM. A comparison of count rate performance for 15O-water blood flow studies in the CTI HR+ and accel tomographs in 3D mode. Paper presented at: 2002 IEEE Nuclear Science Symposium Conference Record. 2002 Nov 10-16; Norfolk, USA.
71. Muehllrhner G, Karp JS, Surti S. 2002; Design considerations for PET scanners. Q J Nucl Med. 46:16–23. PMID:
12072842.
73. Moses WW, Derenzo SE. 1999; Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci. 46:474–478. DOI:
10.1109/23.775565.
Article
74. Han S, Kim YH, Ahn JM, Kang SJ, Oh JS, Shin E, et al. 2018; Feasibility of dynamic stress 201Tl/rest 99mTc-tetrofosmin single photon emission computed tomography for quantification of myocardial perfusion reserve in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging. 45:2173–2180. DOI:
10.1007/s00259-018-4057-5. PMID:
29858614.
Article
77. Hofmann M, Pichler B, Schölkopf B, Beyer T. 2009; Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 36 Suppl 1:S93–S104. DOI:
10.1007/s00259-008-1007-7. PMID:
19104810.
Article
78. Mehranian A, Zaidi H. 2015; Emission-based estimation of lung attenuation coefficients for attenuation correction in time-of-flight PET/MR. Phys Med Biol. 60:4813–4833. DOI:
10.1088/0031-9155/60/12/4813. PMID:
26047036.
Article
79. Benoit D, Ladefoged CN, Rezaei A, Keller SH, Andersen FL, Højgaard L, et al. 2016; Optimized MLAA for quantitative non-TOF PET/MR of the brain. Phys Med Biol. 61:8854–8874. DOI:
10.1088/1361-6560/61/24/8854. PMID:
27910823.
Article
80. Cheng JC, Salomon A, Yaqub M, Boellaard R. 2016; Investigation of practical initial attenuation image estimates in TOF-MLAA reconstruction for PET/MR. Med Phys. 43:4163. DOI:
10.1118/1.4953634. PMID:
27370136.
Article
81. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. 2012; PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 39:1154–1160. DOI:
10.1007/s00259-012-2113-0. PMID:
22526955.
82. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. 2011; MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 52:1392–1399. DOI:
10.2967/jnumed.110.078949. PMID:
21828115.
Article
83. Frach T, Prescher G, Degenhardt C, de Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier- principle of operation and intrinsic detector performance. Paper presented at: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). 2009 Oct 24-Nov 1; Orlando, USA. DOI:
10.1109/NSSMIC.2009.5402143.
84. Degenhardt C, Prescher G, Frach T, Thon A, de Gruyter R, Schmitz A, et al. The digital silicon photomultiplier- a novel sensor for the detection of scintillation light. Paper presented at: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). 2009 Oct 24-Nov 1; Orlando, USA. DOI:
10.1109/NSSMIC.2009.5402190.
85. Degenhardt C, Rodrigues P, Trindade A, Zwaans B, Mülhens O, Dorscheid R, et al. Performance evaluation of a prototype Positron Emission Tomography scanner using Digital Photon Counters (DPC). Paper presented at: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). 2012 Oct 27-Nov 3; Anaheim, USA. DOI:
10.1109/NSSMIC.2012.6551643.
86. Zhang J, Binzel K, Bardos P, Nagar V, Knopp M, Zhang B, et al. 2015; FDG dose reduction potential of a next generation digital detector PET/CT system: initial clinical demonstration in wholebody imaging. J Nucl Med. 56(Suppl 3):1823.
87. Narayanan M, Andreyev A, Bai C, Miller M, Hu Z. 2016; TOF-benefits on the philips digital PET/CT scanner: evaluation of faster convergence and reduced scan times. J Nucl Med. 57(Suppl 2):201.
88. Ahn BC. 2016; Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer. Biomed Res Int. 2016:1680464. DOI:
10.1155/2016/1680464. PMID:
27239470. PMCID:
PMC4864569.
Article
89. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, et al. 2017; Theranostics in nuclear medicine practice. Onco Targets Ther. 10:4821–4828. DOI:
10.2147/OTT.S140671. PMID:
29042793.
Article
91. Koh JM, Kim ES, Ryu JS, Hong SJ, Kim WB, Shong YK. 2003; Effects of therapeutic doses of 131I in thyroid papillary carcinoma patients with elevated thyroglobulin level and negative 131I whole-body scan: comparative study. Clin Endocrinol (Oxf). 58:421–427. DOI:
10.1046/j.1365-2265.2003.01733.x. PMID:
12641624.
Article
92. Jun S, Lee JJ, Park SH, Kim TY, Kim WB, Shong YK, et al. 2015; Prediction of treatment response to 131I therapy by diffuse hepatic uptake intensity on post-therapy whole-body scan in patients with distant metastases of differentiated thyroid cancer. Ann Nucl Med. 29:603–612. DOI:
10.1007/s12149-015-0983-5. PMID:
25980591.
Article
93. Lee N, Oh I, Chae SY, Jin S, Oh SJ, Lee SJ, et al. 2019; Radiation dosimetry of [18F]GP1 for imaging activated glycoprotein IIb/IIIa receptors with positron emission tomography in patients with acute thromboembolism. Nucl Med Biol. 72-73:45–48. DOI:
10.1016/j.nucmedbio.2019.07.003. PMID:
31330411.
Article
94. Willowson KP, Eslick E, Ryu H, Poon A, Bernard EJ, Bailey DL. 2018; Feasibility and accuracy of single time point imaging for renal dosimetry following 177Lu-DOTATATE ('Lutate') therapy. EJNMMI Phys. 5:33. DOI:
10.1186/s40658-018-0232-9. PMID:
30569328.
Article
95. Visvikis D, Cheze Le Rest C, Jaouen V, Hatt M. 2019; Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging. 46:2630–2637. DOI:
10.1007/s00259-019-04373-w. PMID:
31280350.
Article
96. Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-Neto P, Bénard F, et al. 2019; Machine learning in nuclear medicine: part 1-introduction. J Nucl Med. 60:451–458. DOI:
10.2967/jnumed.118.223495. PMID:
30733322.
Article
97. Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. MIT Press;Cambridge:
100. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. 2013; Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 40:133–140. DOI:
10.1007/s00259-012-2247-0. PMID:
23064544.
Article
101. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. 2013; Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 54:19–26. DOI:
10.2967/jnumed.112.107375. PMID:
23204495.
Article
102. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. 2013; Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 266:326–336. DOI:
10.1148/radiol.12112428. PMID:
23169792.
Article
103. Ha S, Choi H, Cheon GJ, Kang KW, Chung JK, Kim EE, et al. 2014; Autoclustering of non-small cell lung carcinoma subtypes on (18)F-FDG PET using texture analysis: a preliminary result. Nucl Med Mol Imaging. 48:278–286. DOI:
10.1007/s13139-014-0283-3. PMID:
26396632. PMCID:
PMC4571663.
Article
104. Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS. 2016; Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via (18)F-FDG PET/CT. Ann Nucl Med. 30:309–319. DOI:
10.1007/s12149-016-1062-2. PMID:
26868139.
Article
105. Aerts H. 2016; Radiomics: there is more than meets the eye in medical imaging. Proc SPIE. 9785:2016SPIE.9785E..0OA. DOI:
10.1117/12.2214251.
107. Choi H, Jin KH. Alzheimer's disease neuroimaging initiative. 2018; Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 344:103–109. DOI:
10.1016/j.bbr.2018.02.017. PMID:
29454006.
Article
108. Choi H, Kim YK, Yoon EJ, Lee JY, Lee DS. Alzheimer's Disease Neuroimaging Initiative. 2020; Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer's disease to Parkinson's disease. Eur J Nucl Med Mol Imaging. 47:403–412. DOI:
10.1007/s00259-019-04538-7. PMID:
31768599.
Article
109. Choi H, Ha S, Im HJ, Paek SH, Lee DS. 2017; Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging. Neuroimage Clin. 16:586–594. DOI:
10.1016/j.nicl.2017.09.010. PMID:
28971009.
Article
110. Ryoo HG, Choi H, Lee DS. 2020; Deep learning-based interpretation of basal/acetazolamide brain perfusion SPECT leveraging unstructured reading reports. Eur J Nucl Med Mol Imaging. 47:2186–2196. DOI:
10.1007/s00259-019-04670-4. PMID:
31912255.
Article
111. Huang B, Chen Z, Wu PM, Ye Y, Feng ST, Wong CO, et al. 2018; Fully automated delineation of gross tumor volume for head and neck cancer on PET-CT using deep learning: a dual-center study. Contrast Media Mol Imaging. 2018:8923028. DOI:
10.1155/2018/8923028. PMID:
30473644. PMCID:
PMC6220410.
Article
112. Chen L, Shen C, Zhou Z, Maquilan G, Albuquerque K, Folkert MR, et al. 2019; Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior. Phys Med Biol. 64:085019. DOI:
10.1088/1361-6560/ab0b64. PMID:
30818303. PMCID:
PMC7098064.
Article
113. Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, et al. 2019; Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol. 113:89–95. DOI:
10.1016/j.ejrad.2019.01.028. PMID:
30927965.
Article
114. Park J, Bae S, Seo S, Park S, Bang JI, Han JH, et al. 2019; Measurement of glomerular filtration rate using quantitative SPECT/CT and deep-learning-based kidney segmentation. Sci Rep. 9:4223. DOI:
10.1038/s41598-019-40710-7. PMID:
30862873. PMCID:
PMC6414660.
Article
116. Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. 2019; Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 46:3555–3564. DOI:
10.1002/mp.13626. PMID:
31131901. PMCID:
PMC6692211.
Article
118. Choi H, Lee DS. Alzheimer's Disease Neuroimaging Initiative. 2018; Generation of structural MR images from amyloid PET: application to MR-less quantification. J Nucl Med. 59:1111–1117. DOI:
10.2967/jnumed.117.199414. PMID:
29217736. PMCID:
PMC6910644.
Article
119. Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. 2018; Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 59:1624–1629. DOI:
10.2967/jnumed.117.202317. PMID:
29449446.
Article
120. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. 2019; Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 60:1183–1189. DOI:
10.2967/jnumed.118.219493. PMID:
30683763.
Article
121. Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q. 2018; Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol. 63:125011. DOI:
10.1088/1361-6560/aac763. PMID:
29790857. PMCID:
PMC6031313.
Article