Prog Med Phys.  2020 Sep;31(3):71-80. 10.14316/pmp.2020.31.3.71.

Carbon Ion Therapy: A Review of an Advanced Technology

Affiliations
  • 1Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
  • 2Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
  • 3Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
  • 4Robotics Research Laboratory for Extreme Environments, Advanced Institute of Convergence Technology, Suwon, Korea
  • 5Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
  • 6Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea

Abstract

This paper provides a brief review of the advanced technologies for carbon ion radiotherapy (CIRT), with a focus on current developments. Compared to photon beam therapy, treatment using heavy ions, especially a carbon beam, has potential advantages due to its physical and biological pro perties. Carbon ion beams with high linear energy transfer demonstrate high relative biological effec­tiveness in cell killing, particularly at the Bragg peak. With these unique properties, CIRT allows for accurate targeting and dose escalation for tumors with better sparing of adjacent normal tissues. Recently, the available CIRT technologies included fast pencil beam scanning, super­con ducting rotating gantry, respiratory motion management, and accurate beam modeling for the treat­ment planning system. These techniques provide precise treatment, operational effi­ciency, and patient comfort. Currently, there are 12 CIRT facilities worldwide; with technological improve­ments, they continue to grow in number. Ongoing technological developments include the use of multiple ion beams, effective beam delivery, accurate biological modeling, and downsizing the facility.

Keyword

Carbon ion radiation therapy; Advanced techniques; Superconducting gantry; Effective beam delivery; Advanced beam modeling

Figure

  • Fig. 1 Dose distributions as a function of depth in water for various clinical radiation beams [14].

  • Fig. 2 Lateral beam deflection as a function of path length. Data from Lawrence Berkeley National Laboratory (LBL), Berkeley, USA [14].

  • Fig. 3 Relative biological effectiveness (RBE) of ion beams as a function of linear energy transfer (LET) [17].

  • Fig. 4 Cell survival curves of human kidney T1 cells after irradiation with ions or X-rays in air or nitrogen atmosphere, respectively [18].

  • Fig. 5 Scheme of the principle of the layer-stacking method [19].


Cited by  2 articles

Who Will Benefit from Charged-Particle Therapy?
Kyung Su Kim, Hong-Gyun Wu
Cancer Res Treat. 2021;53(3):621-634.    doi: 10.4143/crt.2021.299.

Technological Advances in Charged-Particle Therapy
Jong Min Park, Jung-in Kim, Hong-Gyun Wu
Cancer Res Treat. 2021;53(3):635-640.    doi: 10.4143/crt.2021.706.


Reference

References

1. Wilson RR. 1946; Radiological use of fast protons. Radiology. 47:487–491. DOI: 10.1148/47.5.487. PMID: 20274616.
Article
2. Lawrence JH, Tobias CA, Born JL, McCombs RK, Roberts JE, Anger HO, et al. 1958; Pituitary irradiation with high-energy proton beams: a preliminary report. Cancer Res. 18:121–134. PMID: 13511365.
3. Castro JR, Linstadt DE, Bahary JP, Petti PL, Daftari I, Collier JM, et al. 1994; Experience in charged particle irradiation of tumors of the skull base: 1977-1992. Int J Radiat Oncol Biol Phys. 29:647–655. DOI: 10.1016/0360-3016(94)90550-9. PMID: 8040010.
Article
4. Tsujii H, Mizoe JE, Kamada T, Baba M, Kato S, Kato H, et al. 2004; Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother Oncol. 73 Suppl 2:S41–S49. DOI: 10.1016/S0167-8140(04)80012-4. PMID: 15971308.
Article
5. Particle Therapy Co-Operative Group. 2018. Particle therapy facilities in clinical operation. Particle Therapy Co-Operative Group;Available from: https://www.ptcog.ch/index.php/facilities-in-operation . cited 2020 May 5.
6. Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, et al. 2015; Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 16:e93–e100. DOI: 10.1016/S1470-2045(14)70412-7. PMID: 25638685.
Article
7. Pommier P, Lievens Y, Feschet F, Borras JM, Baron MH, Shtiliyanova A, et al. 2010; Simulating demand for innovative radiotherapies: an illustrative model based on carbon ion and proton radiotherapy. Radiother Oncol. 96:243–249. DOI: 10.1016/j.radonc.2010.04.010. PMID: 20452693.
Article
8. Combs SE, Ellerbrock M, Haberer T, Habermehl D, Hoess A, Jäkel O, et al. 2010; Heidelberg Ion Therapy Center (HIT): initial clinical experience in the first 80 patients. Acta Oncol. 49:1132–1140. DOI: 10.3109/0284186X.2010.498432. PMID: 20831505.
Article
9. Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, et al. 1999; Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys. 44:201–210. DOI: 10.1016/S0360-3016(98)00544-6. PMID: 10219815.
Article
10. Torikoshi M, Minohara S, Kanematsu N, Komori M, Kanazawa M, Noda K, et al. 2007; Irradiation system for HIMAC. J Radiat Res. 48 Suppl A:A15–A25. DOI: 10.1269/jrr.48.A15. PMID: 17513897.
Article
11. Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. 2000; Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys. 47:1097–1103. DOI: 10.1016/S0360-3016(00)00524-1. PMID: 10863083.
Article
12. Haberer T, Becher W, Schardt D, Kraft G. 1993; Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res Sect A. 330:296–305. DOI: 10.1016/0168-9002(93)91335-K.
Article
13. Combs SE, Jäkel O, Haberer T, Debus J. 2010; Particle therapy at the Heidelberg Ion Therapy Center (HIT)- integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany. Radiother Oncol. 95:41–44. DOI: 10.1016/j.radonc.2010.02.016. PMID: 20227124.
14. Linz U. 2012. Physical and biological rationale for using Ions in therapy. Ion beam therapy. Springer;Berlin, Heidelberg: DOI: 10.1007/978-3-642-21414-1_4.
Article
15. Chen GT, Castro JR, Quivey JM. 1981; Heavy charged particle radiotherapy. Annu Rev Biophys Bioeng. 10:499–529. DOI: 10.1146/annurev.bb.10.060181.002435. PMID: 7020583.
Article
16. Kraft G, Kraft-Weyrather W, Ritter S, Scholz M, Stanton J. 1989; Cellular and subcellular effect of heavy ions: a comparison of the induction of strand breaks and chromosomal aberration with the incidence of inactivation and mutation. Adv Space Res. 9:59–72. DOI: 10.1016/0273-1177(89)90423-7. PMID: 11537316.
Article
17. Chu W, Ludewigt B, Renner T. 1993; Instrumentation for treatment of cancer using proton and light-ion beams. Rev Sci Instrum. 64:2055–2122. DOI: 10.1063/1.1143946.
Article
18. Todd P. 1968; Fractionated heavy ion irradiation of cultured human cells. Radiat Res. 34:378–389. DOI: 10.2307/3572563. PMID: 5653430.
Article
19. Kanai T, Kanematsu N, Minohara S, Komori M, Torikoshi M, Asakura H, et al. 2006; Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method. Med Phys. 33:2989–2997. DOI: 10.1118/1.2219771. PMID: 16964877.
Article
20. Futami Y, Kanai T, Fujita M, Tomura H, Higashi A, Matsufuji N, et al. 1999; Broad-beam three-dimensional irradiation system for heavy-ion radiotherapy at HIMAC. Nucl Instrum Methods Phys Res Sect A. 430:143–153. DOI: 10.1016/S0168-9002(99)00194-1.
Article
21. Kanematsu N, Endo M, Futami Y, Kanai T, Asakura H, Oka H, et al. 2002; Treatment planning for the layer-stacking irradiation system for three-dimensional conformal heavy-ion radiotherapy. Med Phys. 29:2823–2829. DOI: 10.1118/1.1521938. PMID: 12512716.
Article
22. Eickhoff H, Bar R, Dolinskii A, Haberer T, Schlitt B, Spiller P, et al. HICAT- The German hospital-based light ion cancer therapy project. Paper presented at: Proceedings of the 2003 Particle Accelerator Conference. 2003 May 12-16; Portland, USA. p. 694–698.
23. Borloni E, Rossi S. The CNAO project and the status of the construction. Paper presented at: Proceedings of NIRS-CNAO Joint Symposium on Carbon Ion Radiotherapy. 2006 Nov 27-28; Milano, Italy.
24. Furukawa T, Inaniwa T, Sato S, Shirai T, Takei Y, Takeshita E, et al. 2010; Performance of the NIRS fast scanning system for heavy-ion radiotherapy. Med Phys. 37:5672–5682. DOI: 10.1118/1.3501313. PMID: 21158279.
Article
25. Furukawa T, Inaniwa T, Sato S, Tomitani T, Minohara S, Noda K, et al. 2007; Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 34:1085–1097. DOI: 10.1118/1.2558213. PMID: 17441254.
Article
26. Inaniwa T, Furukawa T, Kanematsu N, Mori S, Mizushima K, Sato S, et al. 2012; Evaluation of hybrid depth scanning for carbon-ion radiotherapy. Med Phys. 39:2820–2825. DOI: 10.1118/1.4705357. PMID: 22559653.
Article
27. Hara Y, Furukawa T, Mizushima K, Inaniwa T, Saotome N, Tansho R, et al. 2017; Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC. Nucl Instrum Methods Phys Res Sect B. 406:343–346. DOI: 10.1016/j.nimb.2017.02.052.
Article
28. Furukawa T, Hara Y, Mizushima K, Saotome N, Tansho R, Saraya Y, et al. 2017; Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl Instrum Methods Phys Res Sect B. 406:361–367. DOI: 10.1016/j.nimb.2016.10.029.
Article
29. Lomax A. 1999; Intensity modulation methods for proton radiotherapy. Phys Med Biol. 44:185–205. DOI: 10.1088/0031-9155/44/1/014. PMID: 10071883.
Article
30. Kim J, Yoon M. 2019; Design of a compact gantry for carbon-ion beam therapy. Phys Rev Accel Beams. 22:101601. DOI: 10.1103/PhysRevAccelBeams.22.101601.
Article
31. Lyman JT, Howard J. 1977; Dosimetry and instrumentation for helium and heavy ions. Int J Radiat Oncol Biol Phys. 3:81–85. DOI: 10.1016/0360-3016(77)90231-0.
Article
32. Phillips TL, Fu KK, Curtis SB. 1977; Tumor biology of helium and heavy ions. Int J Radiat Oncol Biol Phys. 3:109–113. DOI: 10.1016/0360-3016(77)90236-X. PMID: 96044.
Article
33. Saunders W, Castro JR, Chen GT, Collier JM, Zink SR, Pitluck S, et al. 1985; Helium-ion radiation therapy at the Lawrence Berkeley Laboratory: recent results of a Northern California Oncology Group Clinical Trial. Radiat Res Suppl. 8:S227–S234. DOI: 10.2307/3583532. PMID: 3937171.
Article
34. Kempe J, Gudowska I, Brahme A. 2007; Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams. Med Phys. 34:183–192. DOI: 10.1118/1.2400621. PMID: 17278503.
35. Kantemiris I, Karaiskos P, Papagiannis P, Angelopoulos A. 2011; Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak. Med Phys. 38:6585–6591. DOI: 10.1118/1.3662911. PMID: 22149840.
Article
36. Tessonnier T, Marcelos T, Mairani A, Brons S, Parodi K. 2015; Phase space generation for proton and carbon ion beams for external users' applications at the Heidelberg Ion Therapy Center. Front Oncol. 5:297. DOI: 10.3389/fonc.2015.00297. PMID: 26793617.
Article
37. Krämer M, Scifoni E, Schuy C, Rovituso M, Tinganelli W, Maier A, et al. 2016; Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Med Phys. 43:1995. DOI: 10.1118/1.4944593. PMID: 27036594.
Article
38. Marafini M, Paramatti R, Pinci D, Battistoni G, Collamati F, De Lucia E, et al. 2017; Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4He ion beams in a PMMA target. Phys Med Biol. 62:1291–1309. DOI: 10.1088/1361-6560/aa5307. PMID: 28114124.
39. Tessonnier T, Mairani A, Brons S, Sala P, Cerutti F, Ferrari A, et al. 2017; Helium ions at the Heidelberg Ion Beam Therapy Center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Phys Med Biol. 62:6784–6803. DOI: 10.1088/1361-6560/aa7b12. PMID: 28762335.
Article
40. Tessonnier T, Mairani A, Brons S, Haberer T, Debus J, Parodi K. 2017; Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams. Phys Med Biol. 62:3958–3982. DOI: 10.1088/1361-6560/aa6516. PMID: 28406796.
41. Inaniwa T, Kanematsu N, Noda K, Kamada T. 2017; Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization. Phys Med Biol. 62:5180–5197. DOI: 10.1088/1361-6560/aa68d7. PMID: 28333688.
Article
42. Krämer M, Scifoni E, Schmitz F, Sokol O, Durante M. 2014; Overview of recent advances in treatment planning for ion beam radiotherapy. Eur Phys J D. 68:306. DOI: 10.1140/epjd/e2014-40843-x.
Article
43. Kopp B, Mein S, Dokic I, Harrabi S, Böhlen TT, Haberer T, et al. 2020; Development and validation of single field multi-ion particle therapy treatments. Int J Radiat Oncol Biol Phys. 106:194–205. DOI: 10.1016/j.ijrobp.2019.10.008. PMID: 31610250.
Article
44. Inaniwa T, Kanematsu N, Matsufuji N, Kanai T, Shirai T, Noda K, et al. 2015; Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol. 60:3271–3286. DOI: 10.1088/0031-9155/60/8/3271. PMID: 25826534.
Article
45. Inaniwa T, Suzuki M, Hyun Lee S, Mizushima K, Iwata Y, Kanematsu N, et al. 2020; Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams. Phys Med Biol. 65:045005. DOI: 10.1088/1361-6560/ab6eba. PMID: 31968318.
Article
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr