Prog Med Phys.  2020 Mar;31(1):1-7. 10.14316/pmp.2020.31.1.1.

Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy

Affiliations
  • 1Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
  • 2Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea

Abstract

Hadron therapy, such as carbon and helium ions, is increasingly coming to the fore for the treatment of cancers. Such hadron therapy has several advantages over conventional radiotherapy using photons and electrons physically and clinically. These advantages are due to the different physical and biological characteristics of heavy ions including high linear energy transfer and Bragg peak, which lead to the reduced exit dose, lower normal tissue complication probability and the increased relative biological effectiveness (RBE). Despite the promising prospects on the carbon ion radiation therapy, it is in dispute with which bio-mathematical models to calculate the carbon ion RBE. The two most widely used models are local effect model and microdosimetric kinetic model, which are actively utilized in Europe and Japan respectively. Such selection on the RBE model is a crucial issue in that the dose prescription for planning differs according to the models. In this study, we aim to (i) introduce the concept of RBE, (ii) clarify the determinants of RBE, and (iii) compare the existing RBE models for carbon ion therapy.

Keyword

Carbon ion radiotherapy; Relative biological effectiveness; Local effect model; Microdosimetric kinetic model

Figure

  • Fig. 1 Schematic illustration of the cell survival curve based on the LQ model (2). The Survival fraction is in log scale. The photons and carbon ions are considered to be isoeffective when the survival fractions are identical. The ratio of isoeffective photon and ion dose is determined to be RBE. For instance, fixing the survival fraction to 10%, carbon ion RBE is 2.82 whereas fixing to 1%, respective RBE is 2.25. RBE, relative biological effectiveness; LQ, Linear Quadratic.

  • Fig. 2 Illustration of the track structure of photons and carbon ions. (a) Photon track structure within a part of cell nucleus divided into smaller subvolumes. The local dose is identical along the radial direction, denoted as a red straight line. (b) Carbon ion track structure indicates amorphous shape along the radial direction. (c) A scale bar indicates high local dose when red and zero dose when white.


Reference

1. Durante M, Debus J. 2018; Heavy charged particles: does improved precision and higher biological effectiveness translate to better outcome in patients? Semin Radiat Oncol. 28:160–167. DOI: 10.1016/j.semradonc.2017.11.004. PMID: 29735192.
2. Karger CP, Peschke P. 2017; RBE and related modeling in carbon-ion therapy. Phys Med Biol. 63:01TR02. DOI: 10.1088/1361-6560/aa9102. PMID: 28976361.
Article
3. Fossati P, Matsufuji N, Kamada T, Karger CP. 2018; Radiobiological issues in prospective carbon ion therapy trials. Med Phys. 45:e1096–e1110. DOI: 10.1002/mp.12506. PMID: 30421806.
Article
4. Loeffler JS, Durante M. 2013; Charged particle therapy--optimization, challenges and future directions. Nat Rev Clin Oncol. 10:411–424. DOI: 10.1038/nrclinonc.2013.79. PMID: 23689752.
Article
5. Wang T, Xiao P, Jia S, Yuan K, Yang H. 2014; [The basic structure of heavy-ion tumor therapy facility]. Zhongguo Yi Liao Qi Xie Za Zhi. 38:427–429, 438. Chinese. PMID: 25980131.
6. Ebner DK, Kamada T. 2016; The emerging role of carbon-ion radiotherapy. Front Oncol. 6:140. DOI: 10.3389/fonc.2016.00140. PMID: 27376030. PMCID: PMC4894867.
Article
7. Mohamad O, Makishima H, Kamada T. 2018; Evolution of carbon ion radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel). 10:E66. DOI: 10.3390/cancers10030066. PMID: 29509684. PMCID: PMC5876641.
Article
8. Lazar AA, Schulte R, Faddegon B, Blakely EA, Roach M 3rd. 2018; Clinical trials involving carbon-ion radiation therapy and the path forward. Cancer. 124:4467–4476. DOI: 10.1002/cncr.31662. PMID: 30307603. PMCID: PMC6540799.
Article
9. World Health Organization. International Clinical Trials Registry Platform Search Portal. Geneva: World Health Organization. Available from: http://apps.who.int/trialsearch/default.aspx . [cited 2020 Jan 6].
10. Grün R, Friedrich T, Elsässer T, Krämer M, Zink K, Karger CP, et al. 2012; Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys Med Biol. 57:7261–7274. DOI: 10.1088/0031-9155/57/22/7261. PMID: 23075883.
Article
11. Bentzen SM, Parliament M, Deasy JO, Dicker A, Curran WJ, Williams JP, et al. 2010; Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose-volume effects. Int J Radiat Oncol Biol Phys. 76(3(Suppl)):S145–S150. DOI: 10.1016/j.ijrobp.2009.08.076. PMID: 20171510. PMCID: PMC3431963.
Article
12. Lühr A, von Neubeck C, Krause M, Troost EGC. 2018; Relative biological effectiveness in proton beam therapy - current knowledge and future challenges. Clin Transl Radiat Oncol. 9:35–41. DOI: 10.1016/j.ctro.2018.01.006. PMID: 29594249. PMCID: PMC5862688.
Article
13. McMahon SJ. 2018; The linear quadratic model: usage, interpretation and challenges. Phys Med Biol. 64:01TR01. DOI: 10.1088/1361-6560/aaf26a. PMID: 30523903.
Article
14. Schlaff CD, Krauze A, Belard A, O’Connell JJ, Camphausen KA. 2014; Bringing the heavy: carbon ion therapy in the radiobiological and clinical context. Radiat Oncol. 9:88. DOI: 10.1186/1748-717X-9-88. PMID: 24679134. PMCID: PMC4002206.
Article
15. Grün R, Friedrich T, Traneus E, Scholz M. 2019; Is the dose-averaged LET a reliable predictor for the relative biological effectiveness? Med Phys. Phys Med Biol. 46:1064–1074. DOI: 10.1002/mp.13347. PMID: 30565705.
16. Stavrev P, Stavreva N, Ruggieri R, Nahum A. 2015; On differences in radiosensitivity estimation: TCP experiments versus survival curves. a theoretical study. a theoretical study. 60:N293–N299. DOI: 10.1088/0031-9155/60/15/N293. PMID: 26215150.
Article
17. Abolfath R, Peeler CR, Newpower M, Bronk L, Grosshans D, Mohan R. 2017; A model for relative biological effectiveness of therapeutic proton beams based on a global fit of cell survival data. Sci Rep. 7:8340. DOI: 10.1038/s41598-017-08622-6. PMID: 28827691. PMCID: PMC5567137.
Article
18. Glatstein E. 2011; The omega on alpha and beta. Int J Radiat Oncol Biol Phys. 81:319–320. DOI: 10.1016/j.ijrobp.2011.01.011. PMID: 21871342.
Article
19. Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. 1997; Computation of cell survival in heavy ion beams for therapy. the model and its approximation. Radiat Environ Biophys. 36:59–66. DOI: 10.1007/s004110050055. PMID: 9128899.
20. Elsässer T, Scholz M. 2007; Cluster effects within the local effect model. Radiat Res. 167:319–329. DOI: 10.1667/RR0467.1. PMID: 17316069.
Article
21. Elsässer T, Krämer M, Scholz M. 2008; Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys. 71:866–872. DOI: 10.1016/j.ijrobp.2008.02.037. PMID: 18430521.
Article
22. Elsässer T, Weyrather WK, Friedrich T, Durante M, Iancu G, Krämer M, et al. 2010; Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int J Radiat Oncol Biol Phys. 78:1177–1183. DOI: 10.1016/j.ijrobp.2010.05.014. PMID: 20732758.
Article
23. Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. 2018; A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys. 45:e925–e952. DOI: 10.1002/mp.13207. PMID: 30421808.
Article
24. Scholz M, Kraft G. 1996; Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 18:5–14. DOI: 10.1016/0273-1177(95)00784-C. PMID: 11538986.
Article
25. Elsässer T, Cunrath R, Krämer M, Scholz M. 2008; Impact of track structure calculations on biological treatment planning in ion radiotherapy. New J Phys. 10:075005. DOI: 10.1088/1367-2630/10/7/075005.
Article
26. Kellerer AM, Rossi HH. 2012; A generalized formulation of dual radiation action. Radiat Res. 178:AV204–AV213. DOI: 10.1667/RRAV17.1. PMID: 22870971.
Article
27. Hawkins RB. 1994; A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res. 140:366–374. DOI: 10.2307/3579114. PMID: 7972689.
Article
28. Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, et al. 2006; Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 166:629–638. DOI: 10.1667/RR0536.1. PMID: 17007551.
Article
29. Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, et al. 2010; Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 55:6721–6737. DOI: 10.1088/0031-9155/55/22/008. PMID: 21030747.
Article
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr