Korean J Physiol Pharmacol.  2020 Sep;24(5):395-402. 10.4196/kjpp.2020.24.5.395.

Effects of troxerutin on vascular inflammatory mediators andexpression of microRNA-146a/NF-B signaling pathway in aortaof healthy and diabetic rats

Affiliations
  • 1Department of Vascular Surgery, Taizhou People’s Hospital, Taizhou, Jiangsu province 225300, China

Abstract

This study has investigated the effect of a potent bioflavonoid, troxerutin,on diabetes-induced changes in pro-inflammatory mediators and expression ofmicroRNA-146a and nuclear factor-kappa-B (NF-κB) signaling pathway in aortic tissueof type-I diabetic rats. Male Wistar rats were randomly divided into four groups(n = 6/each): healthy, healthy-troxerutin, diabetic, and diabetic-troxerutin. Diabeteswas induced by streptozotocin injection (60 mg/kg; intraperitoneally) and lasted 10weeks. Troxerutin (150 mg/kg/day) was administered orally for last month of experiment.Inflammatory cytokines IL-1, IL-6, and TNF-, as well as intercellular adhesionmolecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), cyclooxygenase-II(COX-II), and inducible-nitric oxide synthase (iNOS) were measured on aortic samplesby enzyme-linked immunosorbent assay. Gene expressions for transcription factorNF-κB, interleukin-1 receptor-associated kinase-1 (IRAK-1), TNF receptor-associatedfactor-6 (TRAF-6), and microRNA-146a were determined using real-time polymerasechain reaction. Ten-week diabetes significantly increased mRNA levels of IRAK-1,TRAF-6, NF-κB, and protein levels of cytokines IL-1, IL-6, TNF-, adhesion moleculesICAM-1, VCAM, and iNOS, COX-II, and decreased expression of microRNA-146a ascompared with healthy rats (p < 0.05 to p < 0.01). However, one month treatmentof diabetic rats with troxerutin restored glucose and insulin levels, significantly decreasedexpression of inflammatory genes and pro-inflammatory mediators andincreased microRNA level in comparison to diabetic group (p < 0.05 to p < 0.01). Inhealthy rats, troxerutin had significant reducing effect only on NF-κB, TNF- and COXIIlevels (p < 0.05). Beside slight improvement of hyperglycemia, troxerutin preventedthe activation of NF-κB-dependent inflammatory signaling in

Keyword

Aorta; Diabetes mellitus; Nuclear factor-kappa B; Troxerutin; Vacscular injury

Figure

  • Fig. 1 Chemical structure of troxerutin.

  • Fig. 2 Real-time PCR analysis of genes expressions in the aortic tissue. The expression (mRNA) levels of NF-κB (A), IRAK-1 (B) and TRAF-6 (C). The data were expressed as mean ± standard error. n = 6 for each group. NF-κB, nuclear factor kappa B; IRAK-1, interleukin-1 receptor-associated kinase-1; TRAF-6, tumor necrosis factor receptor-associated factor-6; Cont, control; TXR, troxerutin. *p < 0.05, and **p < 0.01 vs. Healthy-Cont group; and #p < 0.05 vs. Diabetic-Cont group.

  • Fig. 3 Real-time PCR analysis of miR-146a expression in the aortic tissue. The data were expressed as mean ± standard error. n = 6 for each group. Cont, control; TXR, troxerutin. **p < 0.01 vs. Healthy-Cont group; and #p < 0.05 vs. Diabetic-Cont group.

  • Fig. 4 The levels of inflammatory cytokines in the endothelial cells of aortic tissue. IL-6 (A), IL-1β (B) and TNF-α (C). The data were expressed as mean ± standard error. n = 6 for each group. IL, interleukin; TNF-α, tumor necrosis factor-α; Cont, control; TXR, troxerutin. *p < 0.05 and **p < 0.01 vs. Healthy-Cont group; and #p < 0.05 vs. Diabetic-Cont group.

  • Fig. 5 The levels of adhesion molecules in aortic tissue. ICAM-1 (A), VCAM (B). The data were expressed as mean ± standard error. n = 6 for each group. ICAM-1, intercellular adhesion molecule-1; VCAM, vascular cell adhesion molecule; Cont, control; TXR, troxerutin. *p < 0.05 and **p < 0.01 vs. Healthy-Cont group; and #p < 0.05 vs. Diabetic-Cont group.

  • Fig. 6 The levels of inflammatory inducible enzymes in aortic tissue. iNOS (A), and COX-II (B). The data were expressed as mean ± standard error. n = 6 for each group. iNOS, inducible-nitric oxide synthase; COX-II, cyclooxygenase-II; Cont, control; TXR, troxerutin. *p < 0.05 and **p < 0.01 vs. Healthy-Cont group; and #p < 0.05 vs. Diabetic-Cont group.

  • Fig. 7 Conceptual diagram of the study. NF-κB, nuclear factor kappa B; IRAK-1, interleukin-1 receptor-associated kinase-1; TRAF-6, tumor necrosis factor receptor-associated factor-6; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; TNF-α, tumor necrosis factor-α.


Cited by  1 articles

Fibroblast-derived interleukin-6 exacerbates adverse cardiac remodeling after myocardial infarction
Hongkun Li, Yunfei Bian
Korean J Physiol Pharmacol. 2024;28(3):285-294.    doi: 10.4196/kjpp.2024.28.3.285.


Reference

1. Rask-Madsen C, King GL. 2013; Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 17:20–33. DOI: 10.1016/j.cmet.2012.11.012. PMID: 23312281. PMCID: PMC3546345.
Article
2. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I, Schoenhagen P, Nissen SE. 2008; Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 52:255–262. DOI: 10.1016/j.jacc.2008.03.051. PMID: 18634979.
3. Shi Y, Vanhoutte PM. 2017; Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 9:434–449. DOI: 10.1111/1753-0407.12521. PMID: 28044409.
Article
4. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. 2019; New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 20:247–260. DOI: 10.1016/j.redox.2018.09.025. PMID: 30384259. PMCID: PMC6205410.
Article
5. Kantharidis P, Wang B, Carew RM, Lan HY. 2011; Diabetes complications: the microRNA perspective. Diabetes. 60:1832–1837. DOI: 10.2337/db11-0082. PMID: 21709278. PMCID: PMC3121430.
Article
6. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S. 2011; miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes. 60:2975–2984. DOI: 10.2337/db11-0478. PMID: 21885871. PMCID: PMC3198068.
Article
7. Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R. 2016; Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 27:2277–2288. DOI: 10.1681/ASN.2015010111. PMID: 26647423. PMCID: PMC4978034.
Article
8. Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. 2018; Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther. 12:171–177. DOI: 10.2147/DDDT.S157109. PMID: 29398906. PMCID: PMC5775734.
Article
9. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ. 2013; Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J Immunol. 190:3466–3479. DOI: 10.4049/jimmunol.1202862. PMID: 23420885.
Article
10. Geetha R, Radika MK, Priyadarshini E, Bhavani K, Anuradha CV. 2015; Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol Cell Biochem. 407:263–279. DOI: 10.1007/s11010-015-2474-3. PMID: 26077659.
Article
11. Zhang S, Li H, Zhang L, Li J, Wang R, Wang M. 2017; Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res. 1657:355–360. DOI: 10.1016/j.brainres.2016.12.009. PMID: 27998794.
Article
12. Shu L, Zhang W, Huang G, Huang C, Zhu X, Su G, Xu J. 2019; Troxerutin attenuates myocardial cell apoptosis following myocardial ischemia-reperfusion injury through inhibition of miR-146a-5p expression. J Cell Physiol. 234:9274–9282. DOI: 10.1002/jcp.27607. PMID: 30417352.
Article
13. Zabihi NA, Mousavi SM, Mahmoudabady M, Soukhtanloo M, Sohrabi F, Niazmand S. 2018; Teucrium polium L. improves blood glucose and lipids and ameliorates oxidative stress in heart and aorta of diabetic rats. Int J Prev Med. 9:110. DOI: 10.4103/ijpvm.IJPVM_189_17. PMID: 30687461. PMCID: PMC6326021.
Article
14. Najafi M, Farajnia S, Mohammadi M, Badalzadeh R, Ahmadi Asl N, Baradaran B, Amani M. 2014; Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. J Diabetes Metab Disord. 13:106. DOI: 10.1186/s40200-014-0106-1. PMID: 25436201. PMCID: PMC4247617.
Article
15. Sampath S, Karundevi B. 2014; Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem. 395:11–27. DOI: 10.1007/s11010-014-2107-2. PMID: 24880482.
Article
16. Schalkwijk CG, Stehouwer CD. 2005; Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 109:143–159. DOI: 10.1042/CS20050025. PMID: 16033329.
Article
17. Lam TY, Seto SW, Lau YM, Au LS, Kwan YW, Ngai SM, Tsui KW. 2006; Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice. Eur J Pharmacol. 546:134–141. DOI: 10.1016/j.ejphar.2006.07.003. PMID: 16904102.
Article
18. Mohammad A, Ali N, Reza B, Ali K. 2010; Effect of ascorbic acid supplementation on nitric oxide metabolites and systolic blood pressure in rats exposed to lead. Indian J Pharmacol. 42:78–81. DOI: 10.4103/0253-7613.64501. PMID: 20711370. PMCID: PMC2907019.
Article
19. Das Evcimen N, King GL. 2007; The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 55:498–510. DOI: 10.1016/j.phrs.2007.04.016. PMID: 17574431.
20. Bullon P, Newman HN, Battino M. 2014; Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol 2000. 64:139–153. DOI: 10.1111/j.1600-0757.2012.00455.x. PMID: 24320961.
Article
21. Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. 2008; Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 28:1982–1988. DOI: 10.1161/ATVBAHA.108.169722. PMID: 18772497. PMCID: PMC2577575.
Article
22. Basta G, Schmidt AM, De Caterina R. 2004; Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 63:582–592. DOI: 10.1016/j.cardiores.2004.05.001. PMID: 15306213.
Article
23. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. 2008; High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 57:3090–3098. DOI: 10.2337/db08-0564. PMID: 18650365. PMCID: PMC2570406.
Article
24. Patel S, Santani D. 2009; Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 61:595–603. DOI: 10.1016/S1734-1140(09)70111-2.
25. Yu Y, Zheng G. 2017; Troxerutin protects against diabetic cardiomyopathy through NF-κB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep. 15:3473–3478. DOI: 10.3892/mmr.2017.6456. PMID: 28440404. PMCID: PMC5436284.
Article
26. Zhang H, Liu J, Qu D, Wang L, Luo JY, Lau CW, Liu P, Gao Z, Tipoe GL, Lee HK, Ng CF, Ma RC, Yao X, Huang Y. 2016; Inhibition of miR-200c restores endothelial function in diabetic mice through suppression of COX-2. Diabetes. 65:1196–1207. DOI: 10.2337/db15-1067. PMID: 26822089.
Article
27. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W, Ning G. 2015; Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J Diabetes. 7:158–165. DOI: 10.1111/1753-0407.12163. PMID: 24796653.
28. García-Díaz DF, Pizarro C, Camacho-Guillén P, Codner E, Soto N, Pérez-Bravo F. 2018; Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers. Arch Endocrinol Metab. 62:34–40. DOI: 10.20945/2359-3997000000006. PMID: 29694627.
Article
29. Feng B, Chen S, Gordon AD, Chakrabarti S. 2017; miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 105:70–76. DOI: 10.1016/j.yjmcc.2017.03.002. PMID: 28279663.
Article
30. Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Lu LF, Rudensky AY, Baltimore D. 2017; An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun. 8:851. DOI: 10.1038/s41467-017-00972-z. PMID: 29021573. PMCID: PMC5636846.
Article
31. Ye EA, Steinle JJ. 2016; miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm. 2016:3958453. DOI: 10.1155/2016/3958453. PMID: 26997759. PMCID: PMC4779539.
32. Huang Y, Liu Y, Li L, Su B, Yang L, Fan W, Yin Q, Chen L, Cui T, Zhang J, Lu Y, Cheng J, Fu P, Liu F. 2014; Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 15:142. DOI: 10.1186/1471-2369-15-142. PMID: 25182190.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr