1. Park CM, Song YS. Luteolin and luteolin-7-
O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice. Nutr Res Pract. 2019; 13:473–479. PMID:
31814922.
Article
2. Kim JN, Han SN, Ha TJ, Kim HK. Black soybean anthocyanins attenuate inflammatory responses by suppressing reactive oxygen species production and mitogen activated protein kinases signaling in lipopolysaccharide-stimulated macrophages. Nutr Res Pract. 2017; 11:357–364. PMID:
28989571.
Article
3. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011; 13:11–22. PMID:
21195345.
Article
4. Romano A, Serviddio G, Calcagnini S, Villani R, Giudetti AM, Cassano T, Gaetani S. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med. 2017; 111:281–293. PMID:
28063940.
Article
5. Uchida K. HNE as an inducer of COX-2. Free Radic Biol Med. 2017; 111:169–172. PMID:
28192229.
Article
6. Zarkovic K, Jakovcevic A, Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic Biol Med. 2017; 111:110–126. PMID:
27993730.
Article
7. Zhang H, Forman HJ. 4-hydroxynonenal-mediated signaling and aging. Free Radic Biol Med. 2017; 111:219–225. PMID:
27876535.
Article
8. Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med. 2017; 111:127–139. PMID:
28040472.
Article
9. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev. 2008; 7:83–105. PMID:
17964225.
Article
10. Lee A, Gu H, Gwon MH, Yun JM. Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells. Nutr Res Pract. 2021; 15:591–603. PMID:
34603607.
Article
11. Lee H, Park C, Kwon DH, Hwangbo H, Kim SY, Kim MY, Ji SY, Kim DH, Jeong JW, Kim GY, et al. Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway. Nutr Res Pract. 2021; 15:686–702. PMID:
34858548.
Article
12. Limtrakul P, Yodkeeree S, Pitchakarn P, Punfa W. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages. Nutr Res Pract. 2016; 10:251–258. PMID:
27247720.
Article
13. Sung J, Sung M, Kim Y, Ham H, Jeong HS, Lee J. Anti-inflammatory effect of methanol extract from
Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of NFκB and MAPKs activation in macrophages. Nutr Res Pract. 2014; 8:352–359. PMID:
25110553.
Article
14. Lee JE, Cho SM, Park E, Lee SM, Kim Y, Auh JH, Choi HK, Lim S, Lee SC, Kim JH. Anti-inflammatory effects of
Rubus coreanus Miquel through inhibition of NF-κB and MAP Kinase. Nutr Res Pract. 2014; 8:501–508. PMID:
25324928.
Article
15. Kim SY, Kim H, Min H. Effects of excessive dietary methionine on oxidative stress and dyslipidemia in chronic ethanol-treated rats. Nutr Res Pract. 2015; 9:144–149. PMID:
25861420.
Article
16. Yang L, Kadowaki M. Addition of methionine to rice protein affects hepatic cholesterol output inducing hypocholesterolemia in rats fed cholesterol-free diets. J Med Food. 2011; 14:445–453. PMID:
21434776.
Article
17. Wang Z, Liang M, Li H, Cai L, He H, Wu Q, Yang L.
L-Methionine activates Nrf2-ARE pathway to induce endogenous antioxidant activity for depressing ROS-derived oxidative stress in growing rats. J Sci Food Agric. 2019; 99:4849–4862. PMID:
31001831.
Article
18. Wang Z, Cai L, Li H, Liang M, Zhang Y, Wu Q, Yang L. Rice protein stimulates endogenous antioxidant response attributed to methionine availability in growing rats. J Food Biochem. 2020; 44:e13180. PMID:
32163604.
Article
19. Oda H. Functions of sulfur-containing amino acids in lipid metabolism. J Nutr. 2006; 136(Suppl):1666S–9S. PMID:
16702337.
Article
20. Martínez Y, Li X, Liu G, Bin P, Yan W, Más D, Valdivié M, Hu CA, Ren W, Yin Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 2017; 49:2091–2098. PMID:
28929442.
Article
21. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123:1939–1951. PMID:
8229312.
Article
22. Li H, Cai L, Liang M, Wang Z, Zhang Y, Wu Q, Yang L. Methionine augments endogenous antioxidant capacity of rice protein through stimulating methionine sulfoxide reductase antioxidant system and activating Nrf2-ARE pathway in growing and adult rats. Eur Food Res Technol. 2020; 246:1051–1063.
Article
23. Liang M, Wang Z, Li H, Cai L, Pan J, He H, Wu Q, Tang Y, Ma J, Yang L.
L-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol. 2018; 115:315–328. PMID:
29577948.
Article
24. Wang Z, Liang M, Li H, Cai L, Yang L. Rice protein exerts anti-inflammatory effect in growing and adult rats via suppressing NF-κB pathway. Int J Mol Sci. 2019; 20:6164. PMID:
31817701.
Article
25. Natarajan K, Abraham P, Kota R, Isaac B. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol. 2018; 118:766–783. PMID:
29935243.
Article
26. Lu SC, Mato JM, Espinosa-Diez C, Lamas S. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic Biol Med. 2016; 100:66–72. PMID:
27033954.
Article
27. Métayer S, Seiliez I, Collin A, Duchêne S, Mercier Y, Geraert PA, Tesseraud S. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J Nutr Biochem. 2008; 19:207–215. PMID:
17707628.
Article
28. Li H, Wang Z, Liang M, Cai L, Yang L. Methionine augments antioxidant activity of rice protein during gastrointestinal digestion. Int J Mol Sci. 2019; 20:868. PMID:
30781587.
Article
29. Di Domenico F, Tramutola A, Butterfield DA. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of Alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med. 2017; 111:253–261. PMID:
27789292.
Article
30. Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: methodological aspects and biological consequences. Free Radic Biol Med. 2017; 111:328–344. PMID:
28161307.
Article
31. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009; 30:42–59. PMID:
18601945.
Article
32. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013; 1830:3143–3153. PMID:
22995213.
Article
33. Awasthi YC, Ramana KV, Chaudhary P, Srivastava SK, Awasthi S. Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. Free Radic Biol Med. 2017; 111:235–243. PMID:
27794453.
Article
34. Awasthi YC, Yang Y, Tiwari NK, Patrick B, Sharma A, Li J, Awasthi S. Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radic Biol Med. 2004; 37:607–619. PMID:
15288119.
Article
35. Kriete A, Mayo KL. Atypical pathways of NF-kappaB activation and aging. Exp Gerontol. 2009; 44:250–255. PMID:
19174186.
36. Kuan YH, Huang FM, Li YC, Chang YC. Proinflammatory activation of macrophages by bisphenol A-glycidyl-methacrylate involved NFκB activation via PI3K/Akt pathway. Food Chem Toxicol. 2012; 50:4003–4009. PMID:
22939937.
Article
37. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-κ B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem. 2001; 276:18934–18940. PMID:
11259436.
Article
38. Park CM, Cho CW, Song YS. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells. Food Chem Toxicol. 2014; 66:56–64. PMID:
24447978.
Article