1. van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A. 2015; Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 125:3996–4009. DOI:
10.1182/blood-2015-03-580027. PMID:
25999452. PMCID:
PMC4490298.
Article
3. van der Velden VH, Joosten SA, Willemse MJ, et al. 2001; Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia. 15:1485–7. DOI:
10.1038/sj.leu.2402198. PMID:
11516112.
Article
4. Flohr T, Schrauder A, Cazzaniga G, et al. 2008; Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 22:771–82. DOI:
10.1038/leu.2008.5. PMID:
18239620.
Article
5. van der Velden VH, van Dongen JJ. 2009; MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 538:115–50. DOI:
10.1007/978-1-59745-418-6_7. PMID:
19277574.
Article
7. Dworzak MN, Gaipa G, Ratei R, et al. 2008; Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible. Cytometry B Clin Cytom. 74:331–40. DOI:
10.1002/cyto.b.20430. PMID:
18548617.
Article
8. Elia L, Grammatico S, Paoloni F, et al. 2011; Clinical outcome and monitoring of minimal residual disease in patients with acute lymphoblastic leukemia expressing the MLL/ENL fusion gene. Am J Hematol. 86:993–7. DOI:
10.1002/ajh.22161. PMID:
21953510.
Article
9. van Dongen JJ, Langerak AW, Brüggemann M, et al. 2003; Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 17:2257–317. DOI:
10.1038/sj.leu.2403202. PMID:
14671650.
Article
10. Kreyenberg H, Eckert C, Yarkin Y, et al. 2009; Immunoglobulin and T-cell receptor gene rearrangements as PCR-based targets are stable markers for monitoring minimal residual disease in acute lymphoblastic leukemia after stem cell transplantation. Leukemia. 23:1355–8. DOI:
10.1038/leu.2009.72. PMID:
19357703.
Article
11. Donovan JW, Ladetto M, Zou G, et al. 2000; Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood. 95:2651–8. DOI:
10.1182/blood.V95.8.2651. PMID:
10753847.
Article
12. Jonsson OG, Kitchens RL, Scott FC, Smith RG. 1990; Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood. 76:2072–9. DOI:
10.1182/blood.V76.10.2072.2072. PMID:
2122920.
Article
13. Theunissen PMJ, de Bie M, van Zessen D, de Haas V, Stubbs AP, van der Velden VHJ. 2019; Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: clonal evolution and implications for minimal residual disease target selection. Leuk Res. 76:98–104. DOI:
10.1016/j.leukres.2018.10.009. PMID:
30389174.
Article
14. Shin S, Hwang IS, Kim J, Lee KA, Lee ST, Choi JR. 2017; Detection of immunoglobulin heavy chain gene clonality by next-generation sequencing for minimal residual disease monitoring in B-lymphoblastic leukemia. Ann Lab Med. 37:331–5. DOI:
10.3343/alm.2017.37.4.331. PMID:
28445014. PMCID:
PMC5409014.
Article
16. Reyes-Barron C, Burack WR, Rothberg PG, Ding Y. 2017; Next-generation sequencing for minimal residual disease surveillance in acute lymphoblastic leukemia: an update. Crit Rev Oncog. 22:559–67. DOI:
10.1615/CritRevOncog.2017020588. PMID:
29604931.
Article
17. Kotrova M, Trka J, Kneba M, Brüggemann M. 2017; Is next-generation sequencing the way to go for residual disease monitoring in acute lymphoblastic leukemia? Mol Diagn Ther. 21:481–92. DOI:
10.1007/s40291-017-0277-9. PMID:
28452038.
Article
18. Inaba H, Azzato EM, Mullighan CG. 2017; Integration of next-generation sequencing to treat acute lymphoblastic leukemia with targetable lesions: The St. Jude Children's Research Hospital Approach. Front Pediatr. 5:258. DOI:
10.3389/fped.2017.00258. PMID:
29255701. PMCID:
PMC5722984.
Article
20. Germano G, Valsecchi MG, Buldini B, et al. 2020; Next-generation sequencing of PTEN mutations for monitoring minimal residual disease in T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 67:e28025. DOI:
10.1002/pbc.28025. PMID:
31571345.
Article
21. Della Starza I, De Novi LA, Santoro A, et al. 2019; Digital droplet PCR and next-generation sequencing refine minimal residual disease monitoring in acute lymphoblastic leukemia. Leuk Lymphoma. 60:2838–40. DOI:
10.1080/10428194.2019.1607325. PMID:
31050551.
Article
23. Coustan-Smith E, Sancho J, Hancock ML, et al. 2002; Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood. 100:2399–402. DOI:
10.1182/blood-2002-04-1130. PMID:
12239148.
Article
25. Chen X, Wood BL. 2017; Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev. 31:63–75. DOI:
10.1016/j.blre.2016.09.006. PMID:
27742133.
Article
26. Sarmiento Palao H, Tarín F, Martirena F, et al. 2019; A reproducible strategy for analysis of minimal residual disease measured by Standardized multiparametric flow cytometry in b acute lymphoblastic leukemia. Cytometry B Clin Cytom. 96:12–5. DOI:
10.1002/cyto.b.21720. PMID:
30353651.
Article
27. Basso G, Veltroni M, Valsecchi MG, et al. 2009; Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 27:5168–74. DOI:
10.1200/JCO.2008.20.8934. PMID:
19805690.
Article
28. Ratei R, Basso G, Dworzak M, et al. 2009; Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia. 23:528–34. DOI:
10.1038/leu.2008.324. PMID:
19020543.
Article
29. Dworzak MN, Gaipa G, Schumich A, et al. 2010; Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom. 78:147–53. DOI:
10.1002/cyto.b.20516. PMID:
20201055.
Article
30. Kalina T, Flores-Montero J, van der Velden VH, et al. 2012; EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 26:1986–2010. DOI:
10.1038/leu.2012.122. PMID:
22948490. PMCID:
PMC3437409.
Article
32. Szczepański T, Beishuizen A, Pongers-Willemse MJ, et al. 1999; Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia. 13:196–205. DOI:
10.1038/sj.leu.2401277. PMID:
10025893.
Article
33. Germano G, Songia S, Biondi A, Basso G. 2001; Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica. 86:382–5. PMID:
11325643.
34. Verhagen OJ, Willemse MJ, Breunis WB, et al. 2000; Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 14:1426–35. DOI:
10.1038/sj.leu.2401801. PMID:
10942239.
Article
35. Brüggemann M, Raff T, Flohr T, et al. 2006; Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 107:1116–23. DOI:
10.1182/blood-2005-07-2708. PMID:
16195338.
36. van der Velden VH, Panzer-Grümayer ER, Cazzaniga G, et al. 2007; Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. 21:706–13. DOI:
10.1038/sj.leu.2404535. PMID:
17287857.
Article
37. van der Velden VH, Cazzaniga G, Schrauder A, et al. 2007; Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 21:604–11. DOI:
10.1038/sj.leu.2404586. PMID:
17287850.
Article
38. Szczepański T, van der Velden VH, Raff T, et al. 2003; Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia. 17:2149–56. DOI:
10.1038/sj.leu.2403081. PMID:
14576730.
Article
39. Gabert J, Beillard E, van der Velden VH, et al. 2003; Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia. 17:2318–57. DOI:
10.1038/sj.leu.2403135. PMID:
14562125.
Article
40. Pfeifer H, Cazzaniga G, van der Velden VHJ, et al. 2019; Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 33:1910–22. DOI:
10.1038/s41375-019-0413-0. PMID:
30858550.
Article
41. Pfeifer H, Wassmann B, Bethge W, et al. 2013; Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 27:1254–62. DOI:
10.1038/leu.2012.352. PMID:
23212150.
Article
42. Hong Y, Zhao X, Qin Y, et al. 2018; The prognostic role of E2A-PBX1 expression detected by real-time quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) in B cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 97:1547–54. DOI:
10.1007/s00277-018-3338-1. PMID:
29705861.
Article
43. Bolufer P, Barragán E, Verdeguer A, et al. 2002; Rapid quantitative detection of TEL-AML1 fusion transcripts in pediatric acute lymphoblastic leukemia by real-time reverse transcription polymerase chain reaction using fluorescently labeled probes. Haematologica. 87:23–32. PMID:
11801462.
44. van Dongen JJ, Lhermitte L, Böttcher S, et al. 2012; EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 26:1908–75. DOI:
10.1038/leu.2012.120. PMID:
22552007. PMCID:
PMC3437410.
Article
45. Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJ, Orfao A. EuroFlow Consortium. 2013; Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol. 31:415–25. DOI:
10.1016/j.tibtech.2013.04.008. PMID:
23746659.
Article
46. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. 2017; Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 31:2094–103. DOI:
10.1038/leu.2017.29. PMID:
28104919. PMCID:
PMC5629369.
47. Coccaro N, Anelli L, Zagaria A, et al. 2018; Droplet digital PCR is a robust tool for monitoring minimal residual disease in adult Philadelphia-positive acute lymphoblastic leukemia. J Mol Diagn. 20:474–82. DOI:
10.1016/j.jmoldx.2018.03.002. PMID:
29625246.
Article
48. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA. 2011; Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 83:6474–84. DOI:
10.1021/ac103230c. PMID:
21446772.
Article
49. Whale AS, Huggett JF, Cowen S, et al. 2012; Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 40:e82. DOI:
10.1093/nar/gks203. PMID:
22373922. PMCID:
PMC3367212.
Article
50. Hindson CM, Chevillet JR, Briggs HA, et al. 2013; Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 10:1003–5. DOI:
10.1038/nmeth.2633. PMID:
23995387. PMCID:
PMC4118677.
Article
51. Belgrader P, Tanner SC, Regan JF, Koehler R, Hindson BJ, Brown AS. 2013; Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast carcinoma tissue. Clin Chem. 59:991–4. DOI:
10.1373/clinchem.2012.197855. PMID:
23358413.
Article
52. Lund HL, Hughesman CB, McNeil K, et al. 2016; Initial diagnosis of chronic myelogenous leukemia based on quantification of M-BCR status using droplet digital PCR. Anal Bioanal Chem. 408:1079–94. DOI:
10.1007/s00216-015-9204-2. PMID:
26631023.
Article
53. Alikian M, Ellery P, Forbes M, et al. 2016; Next-generation sequencing-assisted dna-based digital PCR for a personalized approach to the detection and quantification of residual disease in chronic myeloid leukemia patients. J Mol Diagn. 18:176–89. DOI:
10.1016/j.jmoldx.2015.09.005. PMID:
26857065.
Article
54. Zagaria A, Anelli L, Coccaro N, et al. 2015; BCR-ABL1 e6a2 transcript in chronic myeloid leukemia: biological features and molecular monitoring by droplet digital PCR. Virchows Arch. 467:357–63. DOI:
10.1007/s00428-015-1802-z. PMID:
26149409.
Article
55. Jennings LJ, George D, Czech J, Yu M, Joseph L. 2014; Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 16:174–9. DOI:
10.1016/j.jmoldx.2013.10.007. PMID:
24389534.
Article
56. Wright G, Watt E, Inglott S, Brooks T, Bartram J, Adams SP. 2019; Clinical benefit of a high-throughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia. Pediatr Blood Cancer. 66:e27787. DOI:
10.1002/pbc.27787. PMID:
31034760.
Article
57. Salson M, Giraud M, Caillault A, et al. 2017; High-throughput sequencing in acute lymphoblastic leukemia: Follow-up of minimal residual disease and emergence of new clones. Leuk Res. 53:1–7. DOI:
10.1016/j.leukres.2016.11.009. PMID:
27930944.
Article
58. Wu J, Jia S, Wang C, et al. 2016; Minimal residual disease detection and evolved IGH clones analysis in acute B lymphoblastic leukemia using IGH deep sequencing. Front Immunol. 7:403. DOI:
10.3389/fimmu.2016.00403. PMID:
27757113. PMCID:
PMC5048610.
Article
59. Ladetto M, Brüggemann M, Monitillo L, et al. 2014; Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 28:1299–307. DOI:
10.1038/leu.2013.375. PMID:
24342950.
Article
60. Eckert C, Flohr T, Koehler R, et al. 2011; Very early/early relapses of acute lymphoblastic leukemia show unexpected changes of clonal markers and high heterogeneity in response to initial and relapse treatment. Leukemia. 25:1305–13. DOI:
10.1038/leu.2011.89. PMID:
21546902.
Article
61. Kotrova M, van der Velden VHJ, van Dongen JJM, et al. 2017; Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 52:962–8. DOI:
10.1038/bmt.2017.16. PMID:
28244980.
Article
62. Kotrova M, Muzikova K, Mejstrikova E, et al. 2015; The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. 126:1045–7. DOI:
10.1182/blood-2015-07-655159. PMID:
26294720. PMCID:
PMC4551355.
Article
64. Gökbuget N, Kneba M, Raff T, et al. 2012; Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 120:1868–76. DOI:
10.1182/blood-2011-09-377713. PMID:
22442346.
Article
65. Shen Z, Gu X, Mao W, et al. 2018; Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: systematic review and meta-analysis. BMC Cancer. 18:755. DOI:
10.1186/s12885-018-4670-5. PMID:
30037340. PMCID:
PMC6056932.
Article
66. Terwey TH, Hemmati PG, Nagy M, et al. 2014; Comparison of chimerism and minimal residual disease monitoring for relapse prediction after allogeneic stem cell transplantation for adult acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 20:1522–9. DOI:
10.1016/j.bbmt.2014.05.026. PMID:
24907626.
Article