1. Arber DA, Brunning RD, Le Beau MM, et al. Swerdlow SH, Campo E, Harris NL, editors. 2008. Acute myeloid leukaemia (AML) and related precursor neoplasms. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. IARC Press;Lyon, France: p. 110–44.
2. Jaffe ES, Harris NL, Stein H, Vardiman JW. 2001. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. 3rd ed. IARC Press;Lyon, France: p. 75–105.
3. Arber DA, Brunning RD, Le Beau MM, et al. Swerdlow SH, Campo E, Harris NL, editors. 2017. Acute myeloid leukaemia and related precursor neoplasms. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. IARC Press;Lyon, France: p. 130–71.
4. Neuendorff NR, Burmeister T, Dörken B, Westermann J. 2016; BCR-ABL-positive acute myeloid leukemia: a new entity? Analysis of clinical and molecular features. Ann Hematol. 95:1211–21. DOI:
10.1007/s00277-016-2721-z. PMID:
27297971.
Article
5. Soupir CP, Vergilio JA, Dal Cin P, et al. 2007; Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol. 127:642–50. DOI:
10.1309/B4NVER1AJJ84CTUU. PMID:
17369142.
6. Konoplev S, Yin CC, Kornblau SM, et al. 2013; Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma. 54:138–44. DOI:
10.3109/10428194.2012.701739. PMID:
22691121. PMCID:
PMC3925981.
7. Papaemmanuil E, Gerstung M, Bullinger L, et al. 2016; Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–21. DOI:
10.1056/NEJMoa1516192. PMID:
27276561. PMCID:
PMC4979995.
8. Tallman MS, Wang ES, Altman JK, et al. 2019; Acute myeloid leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 17:721–49. DOI:
10.6004/jnccn.2019.0028. PMID:
31200351.
10. Dufour A, Schneider F, Metzeler KH, et al. 2010; Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol. 28:570–7. DOI:
10.1200/JCO.2008.21.6010. PMID:
20038735.
Article
11. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. 2009; Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 113:3088–91. DOI:
10.1182/blood-2008-09-179895. PMID:
19171880. PMCID:
PMC2662648.
Article
12. Gaidzik VI, Teleanu V, Papaemmanuil E, et al. 2016; RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 30:2160–8. DOI:
10.1038/leu.2016.126. PMID:
27137476.
Article
13. Stengel A, Kern W, Meggendorfer M, et al. 2018; Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia. 32:295–302. DOI:
10.1038/leu.2017.239. PMID:
28751771.
Article
14. Schnittger S, Dicker F, Kern W, et al. 2011; RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 117:2348–57. DOI:
10.1182/blood-2009-11-255976. PMID:
21148331.
Article
16. Kottaridis PD, Gale RE, Frew ME, et al. 2001; The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 98:1752–9. DOI:
10.1182/blood.V98.6.1752. PMID:
11535508.
Article
17. Arber DA, Stein AS, Carter NH, Ikle D, Forman SJ, Slovak ML. 2003; Prognostic impact of acute myeloid leukemia classification: importance of detection of recurring cytogenetic abnormalities and multilineage dysplasia on survival. Am J Clin Pathol. 119:672–80. DOI:
10.1309/EM7KCQR4GLMHRCX4. PMID:
12760285.
18. Gahn B, Haase D, Unterhalt M, et al. 1996; De novo AML with dysplastic hematopoiesis: cytogenetic and prognostic significance. Leukemia. 10:946–51. PMID:
8667650.
19. Bacher U, Schnittger S, Macijewski K, et al. 2012; Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood. 119:4719–22. DOI:
10.1182/blood-2011-12-395574. PMID:
22442349.
Article
20. Falini B, Macijewski K, Weiss T, et al. 2010; Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood. 115:3776–86. DOI:
10.1182/blood-2009-08-240457. PMID:
20203266.
Article
21. Haferlach C, Mecucci C, Schnittger S, et al. 2009; AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood. 114:3024–32. DOI:
10.1182/blood-2009-01-197871. PMID:
19429869.
Article
22. Schlenk RF, Taskesen E, van Norden Y, et al. 2013; The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA. Blood. 122:1576–82. DOI:
10.1182/blood-2013-05-503847. PMID:
23863898.
Article
25. Gillis NK, Ball M, Zhang Q, et al. 2017; Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 18:112–21. DOI:
10.1016/S1470-2045(16)30627-1. PMID:
27927582.
Article
28. Zuo Z, Medeiros LJ, Chen Z, et al. 2012; Acute myeloid leukemia (AML) with erythroid predominance exhibits clinical and molecular characteristics that differ from other types of AML. PLoS One. 7:e41485. DOI:
10.1371/journal.pone.0041485. PMID:
22844482. PMCID:
PMC3402404.
Article
29. Ryu S, Park HS, Kim SM, et al. 2018; Shifting of erythroleukemia to myelodysplastic syndrome according to the revised WHO classification: biologic and cytogenetic features of shifted erythroleukemia. Leuk Res. 70:13–9. DOI:
10.1016/j.leukres.2018.04.015. PMID:
29729583.
Article
31. Pileri SA, Ascani S, Cox MC, et al. 2007; Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 21:340–50. DOI:
10.1038/sj.leu.2404491. PMID:
17170724.
Article
32. Campidelli C, Agostinelli C, Stitson R, Pileri SA. 2009; Myeloid sarcoma: extramedullary manifestation of myeloid disorders. Am J Clin Pathol. 132:426–37. DOI:
10.1309/AJCP1ZA7HYZKAZHS. PMID:
19687319.
33. Li Z, Stölzel F, Onel K, et al. 2015; Next-generation sequencing reveals clinically actionable molecular markers in myeloid sarcoma. Leukemia. 29:2113–6. DOI:
10.1038/leu.2015.81. PMID:
25787914. PMCID:
PMC4575593.
Article
34. Fong CT, Brodeur GM. 1987; Down's syndrome and leukemia: epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet. 28:55–76. DOI:
10.1016/0165-4608(87)90354-2. PMID:
2955886.
Article
36. Roy A, Roberts I, Vyas P. 2012; Biology and management of transient abnormal myelopoiesis (TAM) in children with Down syndrome. Semin Fetal Neonatal Med. 17:196–201. DOI:
10.1016/j.siny.2012.02.010. PMID:
22421527.
Article
37. Lange BJ, Kobrinsky N, Barnard DR, et al. 1998; Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood. 91:608–15. PMID:
9427716.
38. Hitzler JK, Cheung J, Li Y, Scherer SW, Zipursky A. 2003; GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood. 101:4301–4. DOI:
10.1182/blood-2003-01-0013. PMID:
12586620.
Article