4. Human Microbiome Project Consortium. 2012; Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. DOI:
10.1038/nature11234. PMID:
22699609. PMCID:
PMC3564958.
5. Jiménez E, Sánchez B, Farina A, Margolles A, Rodríguez JM. 2014; Characterization of the bile and gall bladder microbiota of healthy pigs. Microbiologyopen. 3:937–949. DOI:
10.1002/mbo3.218. PMID:
25336405. PMCID:
PMC4263516.
Article
6. Shen H, Ye F, Xie L, et al. 2015; Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Sci Rep. 5:17450. DOI:
10.1038/srep17450. PMID:
26625708. PMCID:
PMC4667190.
Article
7. Bravo-Blas A, Utriainen L, Clay SL, et al. 2019; Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously. J Immunol. 202:260–267. DOI:
10.4049/jimmunol.1701254. PMID:
30487173. PMCID:
PMC6305795.
Article
9. Chen B, Fu SW, Lu L, Zhao H. 2019; A preliminary study of biliary microbiota in patients with bile duct stones or distal cholangiocarcinoma. Biomed Res Int. 2019:1092563. DOI:
10.1155/2019/1092563. PMID:
31662965. PMCID:
PMC6778921.
Article
10. Gutiérrez-Díaz I, Molinero N, Cabrera A, et al. 2018; Diet: cause or consequence of the microbial profile of cholelithiasis disease? Nutrients. 10:E1307. DOI:
10.3390/nu10091307. PMID:
30223526. PMCID:
PMC6163750.
Article
11. Wu T, Zhang Z, Liu B, et al. 2013; Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics. 14:669. DOI:
10.1186/1471-2164-14-669. PMID:
24083370. PMCID:
PMC3851472.
Article
12. Ye F, Shen H, Li Z, et al. 2016; Influence of the biliary system on biliary bacteria revealed by bacterial communities of the human biliary and upper digestive tracts. PLoS One. 11:e0150519. DOI:
10.1371/journal.pone.0150519. PMID:
26930491. PMCID:
PMC4773253.
Article
13. Avilés-Jiménez F, Guitron A, Segura-López F, et al. 2016; Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin Microbiol Infect. 22:178.e11–178.e22. DOI:
10.1016/j.cmi.2015.10.008. PMID:
26493848.
Article
14. Kim SC, Tonkonogy SL, Albright CA, et al. 2005; Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 128:891–906. DOI:
10.1053/j.gastro.2005.02.009. PMID:
15825073.
Article
15. Marteau P, Seksik P, Shanahan F. 2003; Manipulation of the bacterial flora in inflammatory bowel disease. Best Pract Res Clin Gastroenterol. 17:47–61. DOI:
10.1053/bega.2002.0344. PMID:
12617882.
Article
18. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006; An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444:1027–1031. DOI:
10.1038/nature05414. PMID:
17183312.
Article
23. Kostic AD, Gevers D, Pedamallu CS, et al. 2012; Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:292–298. DOI:
10.1101/gr.126573.111. PMID:
22009990. PMCID:
PMC3266036.
Article
24. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. 2016; Microbial reconstitution reverses maternal dietinduced social and synaptic deficits in offspring. Cell. 165:1762–1775. DOI:
10.1016/j.cell.2016.06.001. PMID:
27315483. PMCID:
PMC5102250.
Article
28. Shetty SA, Hugenholtz F, Lahti L, Smidt H, de Vos WM. 2017; Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol Rev. 41:182–199. DOI:
10.1093/femsre/fuw045. PMID:
28364729. PMCID:
PMC5399919.
Article
29. Dethlefsen L, McFall-Ngai M, Relman DA. 2007; An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 449:811–818. DOI:
10.1038/nature06245. PMID:
17943117.
Article
31. Sasatomi K, Noguchi K, Sakisaka S, Sata M, Tanikawa K. 1998; Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. J Hepatol. 29:409–416. DOI:
10.1016/S0168-8278(98)80058-5. PMID:
9764987.
Article
32. Hopf U, Möller B, Stemerowicz R, et al. 1989; Relation between Escherichia coli R(rough)-forms in gut, lipid A in liver, and primary biliary cirrhosis. Lancet. 2:1419–1422. DOI:
10.1016/S0140-6736(89)92034-5. PMID:
2574361.
Article
34. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G. 2003; Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol. 69:3809–3818. DOI:
10.1128/AEM.69.7.3809-3818.2003. PMID:
12839748. PMCID:
PMC165135.
Article
35. Noh DO, Gilliland SE. 1993; Influence of bile on cellular integrity and beta-galactosidase activity of Lactobacillus acidophilus. J Dairy Sci. 76:1253–1259. DOI:
10.3168/jds.S0022-0302(93)77454-8. PMID:
8505417.
36. Schubert R, Jaroni H, Schoelmerich J, Schmidt KH. 1983; Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion. 28:181–190. DOI:
10.1159/000198984. PMID:
6365666.
Article
37. Fernández Murga ML, Bernik D, Font de Valdez G, Disalvo AE. 1999; Permeability and stability properties of membranes formed by lipids extracted from Lactobacillus acidophilus grown at different temperatures. Arch Biochem Biophys. 364:115–121. DOI:
10.1006/abbi.1998.1093. PMID:
10087172.
38. Kandell RL, Bernstein C. 1991; Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer. 16:227–238. DOI:
10.1080/01635589109514161. PMID:
1775385.
Article
39. García-Quintanilla M, Ramos-Morales F, Casadesús J. 2008; Conjugal transfer of the Salmonella enterica virulence plasmid in the mouse intestine. J Bacteriol. 190:1922–1927. DOI:
10.1128/JB.01626-07. PMID:
18178735. PMCID:
PMC2258861.
41. Flahaut S, Frere J, Boutibonnes P, Auffray Y. 1996; Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol. 62:2416–2420. DOI:
10.1128/AEM.62.7.2416-2420.1996. PMID:
8779581. PMCID:
PMC168024.
Article
43. Sanyal AJ, Hirsch JI, Moore EW. 1994; Premicellar taurocholate enhances calcium uptake from all regions of rat small intestine. Gastroenterology. 106:866–874. DOI:
10.1016/0016-5085(94)90744-7. PMID:
8143992.
Article
45. Maloney PR, Parks DJ, Haffner CD, et al. 2000; Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem. 43:2971–2974. DOI:
10.1021/jm0002127. PMID:
10956205.
Article
46. Inagaki T, Moschetta A, Lee YK, et al. 2006; Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 103:3920–3925. DOI:
10.1073/pnas.0509592103. PMID:
16473946. PMCID:
PMC1450165.
Article
49. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. 2009; The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 183:6251–6261. DOI:
10.4049/jimmunol.0803978. PMID:
19864602.
Article
53. D'Aldebert E, Biyeyeme Bi Mve MJ, Mergey M, et al. 2009; Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology. 136:1435–1443. DOI:
10.1053/j.gastro.2008.12.040. PMID:
19245866.
56. Northfield TC, McColl I. 1973; Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut. 14:513–518. DOI:
10.1136/gut.14.7.513. PMID:
4729918. PMCID:
PMC1412809.
Article
57. Bansal S, Singh M, Kidwai S, et al. 2014; Bile acid amphiphiles with tunable head groups as highly selective antitubercular agents. MedChemComm. 5:1761–1768. DOI:
10.1039/C4MD00303A.
Article
58. Qi Y, Jiang C, Cheng J, et al. 2015; Bile acid signaling in lipid metabolism:metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta. 1851:19–29. DOI:
10.1016/j.bbalip.2014.04.008. PMID:
24796972. PMCID:
PMC4219936.
59. Nevens F, Andreone P, Mazzella G, et al. 2016; A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 375:631–643. DOI:
10.1056/NEJMoa1509840. PMID:
27532829.
60. Bevins CL, Salzman NH. 2011; Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 9:356–368. DOI:
10.1038/nrmicro2546. PMID:
21423246.
Article
61. Sun J, Furio L, Mecheri R, et al. 2015; Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity. 43:304–317. DOI:
10.1016/j.immuni.2015.07.013. PMID:
26253786.
Article
62. Ahuja M, Schwartz DM, Tandon M, et al. 2017; Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 25:635–646. DOI:
10.1016/j.cmet.2017.02.007. PMID:
28273482. PMCID:
PMC5345693.
Article
66. Kim DB, Paik CN, Lee JM, Kim YJ. 2020; Association between increased breath hydrogen methane concentration and prevalence of glucose intolerance in acute pancreatitis. J Breath Res. 14:026006. DOI:
10.1088/1752-7163/ab5460. PMID:
31689699.
Article
67. Kim DB, Paik CN, Sung HJ, et al. 2015; Breath hydrogen and methane are associated with intestinal symptoms in patients with chronic pancreatitis. Pancreatology. 15:514–518. DOI:
10.1016/j.pan.2015.07.005. PMID:
26278025.
Article
68. Kim DB, Paik CN, Song DS, Kim YJ, Lee JM. 2018; The characteristics of small intestinal bacterial overgrowth in patients with gallstone diseases. J Gastroenterol Hepatol. 33:1477–1484. DOI:
10.1111/jgh.14113. PMID:
29392773.
Article
69. Sung HJ, Paik CN, Chung WC, Lee KM, Yang JM, Choi MG. 2015; Small intestinal bacterial overgrowth diagnosed by glucose hydrogen breath test in post-cholecystectomy patients. J Neurogastroenterol Motil. 21:545–551. DOI:
10.5056/jnm15020. PMID:
26351251. PMCID:
PMC4622137.
Article
70. Nakamoto N, Sasaki N, Aoki R, et al. 2019; Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol. 4:492–503. DOI:
10.1038/s41564-018-0333-1. PMID:
30643240.
Article
73. Kullak-Ublick GA, Stieger B, Meier PJ. 2004; Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 126:322–342. DOI:
10.1053/j.gastro.2003.06.005. PMID:
14699511.
Article
74. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. 2004; The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 1:27–42. DOI:
10.2174/1567201043480036. PMID:
16305368.
Article
75. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. 2008; Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A. 105:13580–13585. DOI:
10.1073/pnas.0804437105. PMID:
18757757. PMCID:
PMC2533232.
Article
76. Geller LT, Barzily-Rokni M, Danino T, et al. 2017; Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. DOI:
10.1126/science.aah5043. PMID:
28912244. PMCID:
PMC5727343.
Article
77. Thomas RM, Gharaibeh RZ, Gauthier J, et al. 2018; Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 39:1068–1078. DOI:
10.1093/carcin/bgy073. PMID:
29846515. PMCID:
PMC6067127.
Article
78. Pushalkar S, Hundeyin M, Daley D, et al. 2018; The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8:403–416. DOI:
10.1158/2159-8290.CD-17-1134. PMID:
29567829. PMCID:
PMC6225783.
79. Diehl GE, Longman RS, Zhang JX, et al. 2013; Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature. 494:116–120. DOI:
10.1038/nature11809. PMID:
23334413. PMCID:
PMC3711636.
81. Ammori BJ, Leeder PC, King RF, et al. 1999; Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J Gastrointest Surg. 3:252–262. DOI:
10.1016/S1091-255X(99)80067-5. PMID:
10481118.
Article
82. Sonika U, Goswami P, Thakur B, et al. 2017; Mechanism of increased intestinal permeability in acute pancreatitis: alteration in tight junction proteins. J Clin Gastroenterol. 51:461–466. DOI:
10.1097/MCG.0000000000000612. PMID:
27466164.
84. Madhani K, Farrell JJ. 2016; Autoimmune pancreatitis: an update on diagnosis and management. Gastroenterol Clin North Am. 45:29–43. DOI:
10.1016/j.gtc.2015.10.005. PMID:
26895679.
85. Hamada S, Masamune A, Nabeshima T, Shimosegawa T. 2018; Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J Exp Med. 244:113–117. DOI:
10.1620/tjem.244.113. PMID:
29434076.
Article
86. de Goffau MC, Fuentes S, van den Bogert B, et al. 2014; Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 57:1569–1577. DOI:
10.1007/s00125-014-3274-0. PMID:
24930037.
Article
87. de Goffau MC, Luopajärvi K, Knip M, et al. 2013; Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 62:1238–1244. DOI:
10.2337/db12-0526. PMID:
23274889. PMCID:
PMC3609581.
Article