Restor Dent Endod.  2020 May;45(2):e25. 10.5395/rde.2020.45.e25.

Influence of autoclave sterilization procedures on the cyclic fatigue resistance of heat-treated nickel-titanium instruments: a systematic review

Affiliations
  • 1Department of Endodontics, School of Dentistry, Grande Rio University (UNIGRANRIO), Duque de Caxias, RJ, Brazil
  • 2Department of Endodontics, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
  • 3Department of Endodontics, School of Dentistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
  • 4Department of Preventive and Community Dentistry, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil

Abstract


Objectives
This systematic review evaluated the influence of autoclave sterilization procedures on the cyclic fatigue resistance of heat-treated nickel-titanium (NiTi) instruments.
Materials and Methods
A systematic search without restrictions was conducted in the following electronic databases: PubMed, Scopus, Web of Science, ScienceDirect, Cochrane, and Open Grey. The hand search was also performed in the main endodontic journals. The eligible studies were submitted to the methodological assessment and data extraction.
Results
From 203 abstracts, a total of 10 articles matched the eligible criteria. After reading the full articles, 2 were excluded because of the absence of the heat-treated instruments in the experimental design and 3 due to the lack of a control group using heat-treated instruments without autoclave sterilization. From the 5 included studies, 1 presented a low risk of bias, 3 presented moderate and 1 high risk. It was observed heterogeneous findings in the included studies, with autoclave sterilization cycles increasing, decreasing or not affecting the cyclic fatigue life of heat-treated NiTi instruments. However, the retrieved studies evaluating the cyclic fatigue resistance of endodontic instruments presented different protocols and assessing outcomes, this variability makes the findings less comparable within and also between groups and preclude the establishment of an unbiased scientific evidence base.
Conclusions
Considering the little scientific evidence and considerable risk of bias, it is still possible to conclude that autoclave sterilization procedures appear to influence the cyclic fatigue resistance of heat-treated NiTi instruments.

Keyword

Autoclave sterilization; Cyclic fatigue resistance; NiTi instruments; Systematic review

Figure

  • Figure 1 Flow diagram showing the process of identifying, screening and reasons for the exclusion of the studies.

  • Figure 2 Methodological quality assessment of the included studies.


Cited by  1 articles

Effect of number of uses and sterilization on the instrumented area and resistance of reciprocating instruments
Victor de Ornelas Peraça, Samantha Rodrigues Xavier, Fabio de Almeida Gomes, Luciane Geanini Pena dos Santos, Erick Miranda Souza, Fernanda Geraldo Pappen
Restor Dent Endod. 2021;46(2):e28.    doi: 10.5395/rde.2021.46.e28.


Reference

1. Es-Souni M, Es-Souni M, Brandies HF. On the transformation behaviour, mechanical properties and biocompatibility of two niti-based shape memory alloys: NiTi42 and NiTi42Cu7. Biomaterials. 2001; 22:2153–2161. PMID: 11432595.
2. Abu-Tahun IH, Kwak SW, Ha JH, Kim HC. Microscopic features of fractured fragment of nickel-titanium endodontic instruments by two different modes of torsional loading. Scanning. 2018; 2018:9467059. PMID: 29675119.
Article
3. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000; 33:297–310. PMID: 11307203.
Article
4. Pedullà E, Benites A, La Rosa GM, Plotino G, Grande NM, Rapisarda E, Generali L. Cyclic fatigue resistance of heat-treated nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Endod. 2018; 44:648–653. PMID: 29397218.
Article
5. Cheung GS, Peng B, Bian Z, Shen Y, Darvell BW. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J. 2005; 38:802–809. PMID: 16218972.
Article
6. Peng B, Shen Y, Cheung GS, Xia TJ. Defects in ProTaper S1 instruments after clinical use: longitudinal examination. Int Endod J. 2005; 38:550–557. PMID: 16011774.
Article
7. Plotino G, Costanzo A, Grande NM, Petrovic R, Testarelli L, Gambarini G. Experimental evaluation on the influence of autoclave sterilization on the cyclic fatigue of new nickel-titanium rotary instruments. J Endod. 2012; 38:222–225. PMID: 22244641.
Article
8. Rodrigues RC, Antunes HS, Neves MA, Siqueira JF Jr, Rôças IN. Infection control in retreatment cases: in vivo antibacterial effects of 2 instrumentation systems. J Endod. 2015; 41:1600–1605. PMID: 26234543.
9. Zhao D, Shen Y, Peng B, Haapasalo M. Effect of autoclave sterilization on the cyclic fatigue resistance of thermally treated nickel-titanium instruments. Int Endod J. 2016; 49:990–995. PMID: 26372255.
Article
10. Bulem UK, Kececi AD, Guldas HE. Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Appl Oral Sci. 2013; 21:505–510. PMID: 24473715.
Article
11. Champa C, Divya V, Srirekha A, Karale R, Shetty A, Sadashiva P. An analysis of cyclic fatigue resistance of reciprocating instruments in different canal curvatures after immersion in sodium hypochlorite and autoclaving: an in vitro study. J Conserv Dent. 2017; 20:194–198. PMID: 29279625.
12. Özyürek T, Yılmaz K, Uslu G. The effects of autoclave sterilization on the cyclic fatigue resistance of ProTaper Universal, ProTaper Next, and ProTaper Gold nickel-titanium instruments. Restor Dent Endod. 2017; 42:301–308. PMID: 29142878.
Article
13. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015; 4:1. PMID: 25554246.
Article
14. Aurélio IL, Marchionatti AM, Montagner AF, May LG, Soares FZ. Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis. Dent Mater. 2016; 32:827–845. PMID: 27083253.
Article
15. Arias A, Perez-Higueras JJ, de la Macorra JC. Influence of clinical usage of GT and GTX files on cyclic fatigue resistance. Int Endod J. 2014; 47:257–263. PMID: 23808563.
Article
16. Hilfer PB, Bergeron BE, Mayerchak MJ, Roberts HW, Jeansonne BG. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods. J Endod. 2011; 37:72–74. PMID: 21146081.
Article
17. Khabiri M, Ebrahimi M, Saei MR. The effect of autoclave sterilization on resistance to cyclic fatigue of Hero endodontic file #642 (6%) at two artificial curvature. J Dent (Shiraz). 2017; 18:277–281. PMID: 29201971.
18. Mize SB, Clement DJ, Pruett JP, Carnes DL Jr. Effect of sterilization on cyclic fatigue of rotary nickel-titanium endodontic instruments. J Endod. 1998; 24:843–847. PMID: 10023267.
Article
19. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod. 2004; 30:722–725. PMID: 15448468.
Article
20. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod. 2004; 30:559–567. PMID: 15273636.
Article
21. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod. 2009; 35:1469–1476. PMID: 19840633.
Article
22. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod. 2015; 41:1112–1115. PMID: 25814243.
23. de Vasconcelos RA, Murphy S, Carvalho CA, Govindjee RG, Govindjee S, Peters OA. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod. 2016; 42:782–787. PMID: 26993574.
Article
24. Inan U, Keskin C, Sivas Yilmaz Ö, Baş G. Cyclic fatigue of Reciproc Blue and Reciproc instruments exposed to intracanal temperature in simulated severe apical curvature. Clin Oral Investig. 2019; 23:2077–2082.
Article
25. Plotino G, Grande NM, Testarelli L, Gambarini G, Castagnola R, Rossetti A, Özyürek T, Cordaro M, Fortunato L. Cyclic fatigue of Reciproc and Reciproc Blue nickel-titanium reciprocating files at different environmental temperatures. J Endod. 2018; 44:1549–1552. PMID: 30144990.
Article
26. Savage NW, Walsh LJ. The use of autoclaves in the dental surgery. Aust Dent J. 1995; 40:197–200. PMID: 7661768.
Article
27. Viana AC, Gonzalez BM, Buono VT, Bahia MG. Influence of sterilization on mechanical properties and fatigue resistance of nickel-titanium rotary endodontic instruments. Int Endod J. 2006; 39:709–715. PMID: 16916360.
Article
28. Zinelis S, Darabara M, Takase T, Ogane K, Papadimitriou GD. The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 103:843–847. PMID: 17428695.
Article
29. Li XF, Zheng P, Xu L, Su Q. The influence of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 nickel-titanium rotary instruments. Shanghai Kou Qiang Yi Xue. 2015; 24:690–695. PMID: 27063120.
30. Shen Y, Huang X, Wang Z, Wei X, Haapasalo M. Low environmental temperature influences the fatigue resistance of nickel-titanium files. J Endod. 2018; 44:626–629. PMID: 29306534.
Article
31. Aminsobhani M, Khalatbari MS, Meraji N, Ghorbanzadeh A, Sadri E. Evaluation of the fractured surface of five endodontic rotary instruments: a metallurgical study. Iran Endod J. 2016; 11:286–292. PMID: 27790257.
32. Shim KS, Oh S, Kum K, Kim YC, Jee KK, Chang SW. Mechanical and metallurgical properties of various nickel-titanium rotary instruments. BioMed Res Int. 2017; 2017:4528601. PMID: 29318149.
Article
33. Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, Gandolfi MG, Giorgini L, Prati C. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017; 50:303–313. PMID: 26864081.
Article
34. Shen Y, Zhou HM, Wang Z, Campbell L, Zheng YF, Haapasalo M. Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments. J Endod. 2013; 39:919–923. PMID: 23791264.
35. Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011; 37:1566–1571. PMID: 22000465.
Article
36. Braga LC, Faria Silva AC, Buono VT, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod. 2014; 40:1494–1497. PMID: 25146041.
Article
37. Shen Y, Zhou H, Coil JM, Aljazaeri B, Buttar R, Wang Z, Zheng YF, Haapasalo M. ProFile Vortex and Vortex Blue nickel-titanium rotary instruments after clinical use. J Endod. 2015; 41:937–942. PMID: 25841958.
Article
38. Tsujimoto M, Irifune Y, Tsujimoto Y, Yamada S, Watanabe I, Hayashi Y. Comparison of conventional and new-generation nickel-titanium files in regard to their physical properties. J Endod. 2014; 40:1824–1829. PMID: 25266465.
Article
39. Shen Y, Coil JM, Zhou HM, Tam E, Zheng YF, Haapasalo M. ProFile Vortex instruments after clinical use: a metallurgical properties study. J Endod. 2012; 38:1613–1617. PMID: 23146647.
Article
40. Hieawy A, Haapasalo M, Zhou H, Wang ZJ, Shen Y. Phase transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and ProTaper Universal instruments. J Endod. 2015; 41:1134–1138. PMID: 25841955.
Article
Full Text Links
  • RDE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr