3. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. 2015; Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–38. DOI:
10.1007/s00204-015-1477-x. PMID:
25708889.
Article
4. Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. 2018; Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine. 40:125–39. DOI:
10.1016/j.phymed.2018.01.009. PMID:
29496165.
Article
5. Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW. 2015; Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem. 290:10981–93. DOI:
10.1074/jbc.M114.607960. PMID:
25759382. PMCID:
PMC4409259.
Article
6. Shaker RA, Abboud SH, Assad HC, Hadi N. 2018; Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol. 19:3. DOI:
10.1186/s40360-017-0184-z. PMID:
29321061. PMCID:
PMC5763526.
Article
7. Octavia Y, Kararigas G, de Boer M, Chrifi I, Kietadisorn R, Swinnen M, Duimel H, Verheyen FK, Brandt MM, Fliegner D, Cheng C, Janssens S, Duncker DJ, Moens AL. 2017; Folic acid reduces doxorubicin-induced cardiomyopathy by modulating endothelial nitric oxide synthase. J Cell Mol Med. 21:3277–87. DOI:
10.1111/jcmm.13231. PMID:
28608983. PMCID:
PMC5706529.
Article
8. De Angelis A, urbanek K, Cappetta D, Piegari E, Ciuffreda LP, Rivellino A, Russo R, Esposito G, Rossi F, Berrino L. 2016; Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardio-Oncology. 2:2. DOI:
10.1186/s40959-016-0012-4.
Article
9. Lam W, Jiang Z, Guan F, Huang X, Hu R, Wang J, Bussom S, Liu SH, Zhao H, Yen Y, Cheng YC. 2015; PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep. 5:9384. DOI:
10.1038/srep09384. PMID:
25819872. PMCID:
PMC4377583.
Article
10. Moutia M, Habti N, Badou A. 2018; In vitro and in vivo immunomodulator activities of allium sativum L. Evid Based Complementary Altern Med. 2018:4984659. DOI:
10.1155/2018/4984659. PMID:
30008785. PMCID:
PMC6020507.
Article
11. Arreola R, Quintero-Fabián S, López-Roa RI, Flores-Gutiérrez EO, Reyes-Grajeda JP, Carrera-Quintanar L, Ortuño-Sahagún D. 2015; Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res. 2015:401630. DOI:
10.1155/2015/401630. PMID:
25961060. PMCID:
PMC4417560.
Article
12. Wang X, Zhang M, Yang Y. 2019; The vivo antioxidant activity of self-made aged garlic extract on the d-galactose-induced mice and its mechanism research via gene chip analysis. RSC Adv. 9:3669–78. DOI:
10.1039/C8RA10308A.
Article
13. Jeong YY, Ryu JH, Shin JH, Kang MJ, Kang JR, Han J, Kang D. 2016; Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules. 21:430. DOI:
10.3390/molecules21040430. PMID:
27043510. PMCID:
PMC6274159.
Article
16. Zhang J, Cui L, Han X, Zhang Y, Zhang X, Chu X, Zhang F, Zhang Y, Chu L. 2017; Protective effects of tannic acid on acute doxorubicin-induced cardiotoxicity: Involvement of suppression in oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 93:1253–60. DOI:
10.1016/j.biopha.2017.07.051. PMID:
28738542.
Article
17. Bancroft JD, Layton C. Bancroft JD, Layton C, Suvarna KS, editors. 2012. The hematoxylins and eosin. Theory and practice of histological techniques. 7th ed. Elsevier;Philadelphia: p. 172–214.
Article
18. Hayat MA. Hayat MA, editor. 2000. Chemical Fixation. Principles and techniques of electron microscopy: biological applications. 4th ed. Cambridge University Press;Cambridge: p. 4–85.
Article
19. Buhl SN, Jackson KY. 1978; Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate-to-pyruvate and pyruvate-to-lactate reactions in human serum at 25, 30, and 37 degrees C. Clin Chem. 24:828–31. DOI:
10.1093/clinchem/24.5.828.
Article
20. Tietz NW, Rinker AD, Shaw LM. 1983; International Federation of Clinical Chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC document stage 2, draft 1, 1983-03 with a view to an IFCC recommendation. Clin Chim Acta. 135:339F–67F.
21. Hørder M, Elser RC, Gerhardt W, Mathieu M, Sampson EJ. 1990; International Federation of Clinical Chemistry (IFCC): scientific division, committee on enzymes. IFCC methods for the measurement of catalytic concentration of enzymes. Part 7. IFCC method for creatine kinase (ATP: creatine (N-phosphotransferase, EC 2.7.3.2). IFCC recommendation. J Automat Chem. 12:22–40. DOI:
10.1155/S1463924690000049. PMID:
18925260. PMCID:
PMC2547813.
Article
27. Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. 2016; Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 90:2063–76. DOI:
10.1007/s00204-016-1759-y. PMID:
27342245.
Article
28. Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. 2019; Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods. 29:344–54. DOI:
10.1080/15376516.2018.1564948. PMID:
30636491.
Article
29. Abdel-Daim MM, Kilany OE, Khalifa HA, Ahmed AAM. 2017; Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol. 80:745–53. DOI:
10.1007/s00280-017-3413-7. PMID:
28785995.
Article
30. Alkreathy HM, Damanhouri ZA, Ahmed N, Slevin M, Osman AM. 2012; Mechanisms of cardioprotective effect of aged garlic extract against doxorubicin-induced cardiotoxicity. Integr Cancer Ther. 11:364–70. DOI:
10.1177/1534735411426726. PMID:
22172987.
Article
31. Abd El-Halim SS, Mohamed MM. 2012; Garlic powder attenuates acrylamide-induced oxidative damage in multiple organs in rat. J Appl Sci Res. 8:168–73.
32. Somade OT, Adedokun AH, Adeleke IK, Taiwo MA, Oyeniran MO. 2019; Diallyl disulfide, a garlic-rich compound ameliorates trichloromethane-induced renal oxidative stress, NFkB activation and apoptosis in rats. Clin Nutr Exp. 23:44–59. DOI:
10.1016/j.yclnex.2018.10.007.
33. Wu R, Wang HL, Yu HL, Cui XH, Xu MT, Xu X, Gao JP. 2016; Doxorubicin toxicity changes myocardial energy metabolism in rats. Chem Biol Interact. 244:149–58. DOI:
10.1016/j.cbi.2015.12.010. PMID:
26721193.
Article
34. Mantawy EM, Esmat A, El-Bakly WM, Salah ElDin RA, El-Demerdash E. 2017; Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci Rep. 7:4795. DOI:
10.1038/s41598-017-05005-9. PMID:
28684738. PMCID:
PMC5500480.
Article
35. Takemura G, Fujiwara H. 2007; Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 49:330–52. DOI:
10.1016/j.pcad.2006.10.002. PMID:
17329180.
36. Lončar-Turukalo T, Vasić M, Tasić T, Mijatović G, Glumac S, Bajić D, Japunžić-Žigon N. 2015; Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol Meas. 36:727–39. DOI:
10.1088/0967-3334/36/4/727. PMID:
25798626.
Article
38. Zhang QL, Yang JJ, Zhang HS. 2019; Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother. 109:71–83. DOI:
10.1016/j.biopha.2018.07.037. PMID:
30396094.
Article
39. Halliwell B, Gutteridge J. 2007. Free radicals in biology and medicine. 4th ed. Oxford University Press;Oxford:
40. Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, Nagy AA, Mosli HA, Mohamadin AM, Ashour OM. 2010; Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol. 48:1178–84. DOI:
10.1016/j.fct.2010.02.008. PMID:
20146931.
Article