Ann Pediatr Endocrinol Metab.  2020 Mar;25(1):15-23. 10.6065/apem.2020.25.1.15.

Bone health in pediatric patients with neurological disorders

Affiliations
  • 1Division of Pediatric Neurology, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
  • 2Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
  • 3Neuroscience Center, National Children's Medical Center, Tashkent, Uzbekistan
  • 4Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea

Abstract

Patients with neurological disorders are at high risk of developing osteoporosis, as they possess multiple risk factors leading to low bone mineral density. Such factors include inactivity, decreased exposure to sunlight, poor nutrition, and the use of medication or treatment that can cause lower bone mineral density such as antiepileptic drugs, ketogenic diet, and glucocorticoids. In this article, mechanisms involved in altered bone health in children with neurological disorders and management for patients with epilepsy, cerebral palsy, and Duchenne muscular dystrophy regarding bone health are reviewed.

Keyword

Osteoporosis; Bone; Neurological disorders; Child; Epilepsy; Cerebral palsy

Figure

  • Fig. 1. Vitamin D, bone metabolism, and alteration in patients with neurological disorders. Boxed phrases refer to factors that can cause osteoporosis in patients with neurological disorders. * CYP450 enzyme-inducing drugs increase the metabolism of vitamin D resulting in decreased serum 25-hydroxyvitamin D level and subsequently decreased serum 1,25-dihydroxyvitamin D (1,25(OH)2D) level. † Ketogenic diet and other drugs that induce metabolic acidosis cause hypercalciuria in association with calcium loss from bone, resulting in negative calcium balance. Ketogenic diet can also cause inadequate calcium and vitamin D intake. ‡ Such a phenomenon is observed in a setting with normal serum calcium level. In the presence of low serum calcium level, 1,25(OH)2D induces bone resorption. AEDs, antiepileptic drugs.


Reference

References

1. Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016; 27:2147–79.
Article
2. Houlihan CM, Stevenson RD. Bone density in cerebral palsy. Phys Med Rehabil Clin N Am. 2009; 20:493–508.
Article
3. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991; 73:555–63.
Article
4. Melton LJ 3rd, Kan SH, Wahner HW, Riggs BL. Lifetime fracture risk: an approach to hip fracture risk assessment based on bone mineral density and age. J Clin Epidemiol. 1988; 41:985–94.
Article
5. Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002; 110(1 Pt 1):e5.
Article
6. McNamara NA, Romanowski EMF, Olson DP, Shellhaas RA. Bone health and endocrine comorbidities in pediatric epilepsy. Semin Pediatr Neurol. 2017; 24:301–9.
Article
7. Yasar E, Adiguzel E, Arslan M, Matthews DJ. Basics of bone metabolism and osteoporosis in common pediatric neuromuscular disabilities. Eur J Paediatr Neurol. 2018; 22:17–26.
Article
8. Gordon CM, Leonard MB, Zemel BS. 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom. 2014; 17:219–24.
Article
9. Jones AR, Zacharin MR, Cameron FJ, Simm PJ. Bone density assessment in a tertiary paediatric centre over 13 years: referral patterns and limitations. J Paediatr Child Health. 2015; 51:608–13.
Article
10. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003; 275:1081–101.
Article
11. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004; 80(6 Suppl):1689S–1696S.
Article
12. Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008; 122:398–417.
Article
13. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96:1911–30.
Article
14. Goltzman D. Functions of vitamin D in bone. Histochem Cell Biol. 2018; 149:305–12.
Article
15. Rosen CJ. Clinical practice. Vitamin D insufficiency. N Engl J Med. 2011; 364:248–54.
16. Shellhaas RA, Joshi SM. Vitamin D and bone health among children with epilepsy. Pediatr Neurol. 2010; 42:385–93.
Article
17. Mesias M, Seiquer I, Navarro MP. Calcium nutrition in adolescence. Crit Rev Food Sci Nutr. 2011; 51:195–209.
Article
18. Blair HC, Robinson LJ, Huang CL, Sun L, Friedman PA, Schlesinger PH, et al. Calcium and bone disease. Biofactors. 2011; 37:159–67.
Article
19. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011; 96:53–8.
Article
20. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004; 101:7711–5.
Article
21. Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos Int. 2005; 16:713–6.
Article
22. Soderpalm AC, Magnusson P, Ahlander AC, Karlsson J, Kroksmark AK, Tulinius M, et al. Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscul Disord. 2007; 17:919–28.
Article
23. Francis RM, Anderson FH, Patel S, Sahota O, van Staa TP. Calcium and vitamin D in the prevention of osteoporotic fractures. Qjm. 2006; 99:355–63.
Article
24. Kilpinen-Loisa P, Pihko H, Vesander U, Paganus A, Ritanen U, Makitie O. Insufficient energy and nutrient intake in children with motor disability. Acta Paediatr. 2009; 98:1329–33.
Article
25. Mutlu GY, Kusdal Y, Ozsu E, Cizmecioglu FM, Hatun S. Prevention of Vitamin D deficiency in infancy: daily 400 IU vitamin D is sufficient. Int J Pediatr Endocrinol. 2011; 2011:4.
Article
26. Gonzalez L, Nazario CM, Gonzalez MJ. Nutrition-related problems of pediatric patients with neuromuscular disorders. P R Health Sci J. 2000; 19:35–8.
27. Aydin K, Kartal A, Keles Alp E. High rates of malnutrition and epilepsy: two common comorbidities in children with cerebral palsy. Turk J Med Sci. 2019; 49:33–7.
Article
28. Bailey DA, McCulloch RG. Bone tissue and physical activity. Can J Sport Sci. 1990; 15:229–39.
29. Frost HM, Schonau E. The "muscle-bone unit" in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000; 13:571–90.
Article
30. Zacharin M. Current advances in bone health of disabled children. Curr Opin Pediatr. 2004; 16:545–51.
Article
31. Mergler S, Evenhuis HM, Boot AM, De Man SA, Bindels-De Heus KG, Huijbers WA, et al. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009; 51:773–8.
Article
32. Zacharin M. Assessing the skeleton in children and adolescents with disabilities: avoiding pitfalls, maximising outcomes. A guide for the general paediatrician. J Paediatr Child Health. 2009; 45:326–31.
Article
33. Henderson RC. Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia. Dev Med Child Neurol. 1997; 39:224–7.
Article
34. Sturm PF, Alman BA, Christie BL. Femur fractures in institutionalized patients after hip spica immobilization. J Pediatr Orthop. 1993; 13:246–8.
35. Stasikelis PJ, Lee DD, Sullivan CM. Complications of osteotomies in severe cerebral palsy. J Pediatr Orthop. 1999; 19:207–10.
Article
36. Henderson RC, Kemp GJ, Campion ER. Residual bonemineral density and muscle strength after fractures of the tibia or femur in children. J Bone Joint Surg Am. 1992; 74:211–8.
Article
37. Wong J, Wirrell E. Physical activity in children/teens with epilepsy compared with that in their siblings without epilepsy. Epilepsia. 2006; 47:631–9.
Article
38. Canalis E. Mechanisms of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol. 2003; 15:454–7.
Article
39. Verrotti A, Greco R, Morgese G, Chiarelli F. Increased bone turnover in epileptic patients treated with carbamazepine. Ann Neurol. 2000; 47:385–8.
Article
40. Nicholas JM, Ridsdale L, Richardson MP, Grieve AP, Gulliford MC. Fracture risk with use of liver enzyme inducing antiepileptic drugs in people with active epilepsy: cohort study using the general practice research database. Seizure. 2013; 22:37–42.
Article
41. Verrotti A, Coppola G, Parisi P, Mohn A, Chiarelli F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010; 112:1–10.
Article
42. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with use of antiepileptic drugs. Epilepsia. 2004; 45:1330–7.
Article
43. Riss J, Cloyd J, Gates J, Collins S. Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand. 2008; 118:69–86.
Article
44. Ensrud KE, Walczak TS, Blackwell T, Ensrud ER, Bowman PJ, Stone KL. Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology. 2004; 62:2051–7.
Article
45. Kulak CA, Borba VZ, Bilezikian JP, Silvado CE, Paola L, Boguszewski CL. Bone mineral density and serum levels of 25 OH vitamin D in chronic users of antiepileptic drugs. Arq Neuropsiquiatr. 2004; 62:940–8.
Article
46. Hosseinpour F, Ellfolk M, Norlin M, Wikvall K. Phenobarbital suppresses vitamin D3 25-hydroxylase expression: a potential new mechanism for drug-induced osteomalacia. Biochem Biophys Res Commun. 2007; 357:603–7.
Article
47. Foss MC, Meneghelli UG, Tabosa Verissimo JM. The effect of the anticonvulsants phenobarbital and diphenylhydantoin on intestinal absorption of calcium. Acta Physiol Lat Am. 1979; 29:223–8.
48. Koch HU, Kraft D, von Herrath D, Schaefer K. Influence of diphenylhydantoin and phenobarbital on intestinal calcium transport in the rat. Epilepsia. 1972; 13:829–34.
Article
49. Luoma PV, Reunanen MI, Sotaniemi EA. Changes in serum triglyceride and cholesterol levels during longterm phenytoin treatment for epilepsy. Acta Med Scand. 1979; 206:229–31.
Article
50. Harris M, Jenkins MV, Wills MR. Phenytoin inhibition of parathyroid hormone induced bone resorption in vitro. Br J Pharmacol. 1974; 50:405–8.
51. Hahn TJ, Scharp CR, Richardson CA, Halstead LR, Kahn AJ, Teitelbaum SL. Interaction of diphenylhydantoin (phenytoin) and phenobarbital with hormonal mediation of fetal rat bone resorption in vitro. J Clin Invest. 1978; 62:406–14.
Article
52. Pack AM, Morrell MJ, Randall A, McMahon DJ, Shane E. Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy. Neurology. 2008; 70:1586–93.
Article
53. Valimaki MJ, Tiihonen M, Laitinen K, Tahtela R, Karkkainen M, Lamberg-Allardt C, et al. Bone mineral density measured by dual-energy x-ray absorptiometry and novel markers of bone formation and resorption in patients on antiepileptic drugs. J Bone Miner Res. 1994; 9:631–7.
Article
54. Feldkamp J, Becker A, Witte OW, Scharff D, Scherbaum WA. Long-term anticonvulsant therapy leads to low bone mineral density--evidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Exp Clin Endocrinol Diabetes. 2000; 108:37–43.
Article
55. Takahashi A, Onodera K, Shinoda H, Mayanagi H. Phenytoin and its metabolite, 5-(4-hydroxyphenyl)-5-phenylhydantoin, show bone resorption in cultured neonatal mouse calvaria. Jpn J Pharmacol. 2000; 82:82–4.
Article
56. Ohta T, Wergedal JE, Gruber HE, Baylink DJ, Lau KH. Low dose phenytoin is an osteogenic agent in the rat. Calcif Tissue Int. 1995; 56:42–8.
Article
57. Vernillo AT, Rifkin BR, Hauschka PV. Phenytoin affects osteocalcin secretion from osteoblastic rat osteosarcoma 17/2.8 cells in culture. Bone. 1990; 11:309–12.
Article
58. von Borstel Smith M, Crofoot K, Rodriguez-Proteau R, Filtz TM. Effects of phenytoin and carbamazepine on calcium transport in Caco-2 cells. Toxicol In Vitro. 2007; 21:855–62.
Article
59. Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology. 2001; 57:445–9.
Article
60. Tekgul H, Serdaroglu G, Huseyinov A, Gokben S. Bone mineral status in pediatric outpatients on antiepileptic drug monotherapy. J Child Neurol. 2006; 21:411–4.
Article
61. Tsukahara H, Kimura K, Todoroki Y, Ohshima Y, Hiraoka M, Shigematsu Y, et al. Bone mineral status in ambulatory pediatric patients on long-term anti-epileptic drug therapy. Pediatr Int. 2002; 44:247–53.
Article
62. Babayigit A, Dirik E, Bober E, Cakmakci H. Adverse effects of antiepileptic drugs on bone mineral density. Pediatr Neurol. 2006; 35:177–81.
Article
63. Andress DL, Ozuna J, Tirschwell D, Grande L, Johnson M, Jacobson AF, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002; 59:781–6.
Article
64. Pack AM, Morrell MJ, Marcus R, Holloway L, Flaster E, Done S, et al. Bone mass and turnover in women with epilepsy on antiepileptic drug monotherapy. Ann Neurol. 2005; 57:252–7.
Article
65. Kim SH, Lee JW, Choi KG, Chung HW, Lee HW. A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy. Epilepsy Behav. 2007; 10:291–5.
Article
66. Nicolaidou P, Georgouli H, Kotsalis H, Matsinos Y, Papadopoulou A, Fretzayas A, et al. Effects of anticonvulsant therapy on vitamin D status in children: prospective monitoring study. J Child Neurol. 2006; 21:205–9.
Article
67. Boluk A, Guzelipek M, Savli H, Temel I, Ozisik HI, Kaygusuz A. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004; 50:93–7.
Article
68. Kumandas S, Koklu E, Gumus H, Koklu S, Kurtoglu S, Karakukcu M, et al. Effect of carbamezapine and valproic acid on bone mineral density, IGF-I and IGFBP-3. J Pediatr Endocrinol Metab. 2006; 19:529–34.
Article
69. Rieger-Wettengl G, Tutlewski B, Stabrey A, Rauch F, Herkenrath P, Schauseil-Zipf U, et al. Analysis of the musculoskeletal system in children and adolescents receiving anticonvulsant monotherapy with valproic acid or carbamazepine. Pediatrics. 2001; 108:E107.
Article
70. Guo CY, Ronen GM, Atkinson SA. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia. 2001; 42:1141–7.
Article
71. Kafali G, Erselcan T, Tanzer F. Effect of antiepileptic drugs on bone mineral density in children between ages 6 and 12 years. Clin Pediatr (Phila). 1999; 38:93–8.
Article
72. Erbayat Altay E, Serdaroglu A, Tumer L, Gucuyener K, Hasanoglu A. Evaluation of bone mineral metabolism in children receiving carbamazepine and valproic acid. J Pediatr Endocrinol Metab. 2000; 13:933–9.
Article
73. Voudris K, Moustaki M, Zeis PM, Dimou S, Vagiakou E, Tsagris B, et al. Alkaline phosphatase and its isoenzyme activity for the evaluation of bone metabolism in children receiving anticonvulsant monotherapy. Seizure. 2002; 11:377–80.
Article
74. Oner N, Kaya M, Karasalihoglu S, Karaca H, Celtik C, Tutunculer F. Bone mineral metabolism changes in epileptic children receiving valproic acid. J Paediatr Child Health. 2004; 40:470–3.
Article
75. Akin R, Okutan V, Sarici U, Altunbas A, Gokcay E. Evaluation of bone mineral density in children receiving antiepileptic drugs. Pediatr Neurol. 1998; 19:129–31.
Article
76. Simm PJ, Bicknell-Royle J, Lawrie J, Nation J, Draffin K, Stewart KG, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res. 2017; 136:62–6.
Article
77. Schuh L, Barkley GL, Gates JR. Antiepileptic drugs and reduced bone mineral density. Epilepsy Behav. 2004; 5:296–300.
Article
78. Farhat G, Yamout B, Mikati MA, Demirjian S, Sawaya R, El-Hajj Fuleihan G. Effect of antiepileptic drugs on bone density in ambulatory patients. Neurology. 2002; 58:1348–53.
Article
79. Lazzari AA, Dussault PM, Thakore-James M, Gagnon D, Baker E, Davis SA, et al. Prevention of bone loss and vertebral fractures in patients with chronic epilepsy-antiepileptic drug and osteoporosis prevention trial. Epilepsia. 2013; 54:1997–2004.
Article
80. Gniatkowska-Nowakowska A. Fractures in epilepsy children. Seizure. 2010; 19:324–5.
Article
81. Valmadrid C, Voorhees C, Litt B, Schneyer CR. Practice patterns of neurologists regarding bone and mineral effects of antiepileptic drug therapy. Arch Neurol. 2001; 58:1369–74.
Article
82. Fewtrell MS. Bone densitometry in children assessed by dual x ray absorptiometry: uses and pitfalls. Arch Dis Child. 2003; 88:795–8.
Article
83. Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018; 3:175–92.
Article
84. Leet AI, Mesfin A, Pichard C, Launay F, Brintzenhofeszoc K, Levey EB, et al. Fractures in children with cerebral palsy. J Pediatr Orthop. 2006; 26:624–7.
Article
85. Stallings VA, Cronk CE, Zemel BS, Charney EB. Body composition in children with spastic quadriplegic cerebral palsy. J Pediatr. 1995; 126:833–9.
Article
86. Fehlings D, Switzer L, Agarwal P, Wong C, Sochett E, Stevenson R, et al. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol. 2012; 54:106–16.
Article
87. Ozel S, Switzer L, Macintosh A, Fehlings D. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: an update. Dev Med Child Neurol. 2016; 58:918–23.
Article
88. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000; 20:71–4.
Article
89. McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002; 44:695–8.
Article
90. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, et al. Orthopedic outcomes of longterm daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007; 68:1607–13.
Article
91. Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018; 17:347–61.
Article
92. Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003; 14:761–7.
Article
93. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010; 9:77–93.
Article
94. Ma J, McMillan HJ, Karaguzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2017; 28:597–608.
Article
95. Ferraris JR, Pasqualini T, Alonso G, Legal S, Sorroche P, Galich AM, et al. Effects of deflazacort vs. methylprednisone: a randomized study in kidney transplant patients. Pediatr Nephrol. 2007; 22:734–41.
Article
96. Ferraris JR, Pasqualini T, Legal S, Sorroche P, Galich AM, Pennisi P, et al. Effect of deflazacort versus methylprednisone on growth, body composition, lipid profile, and bone mass after renal transplantation. The Deflazacort Study Group. Pediatr Nephrol. 2000; 14:682–8.
97. Loftus J, Allen R, Hesp R, David J, Reid DM, Wright DJ, et al. Randomized, double-blind trial of deflazacort versus prednisone in juvenile chronic (or rheumatoid) arthritis: a relatively bone-sparing effect of deflazacort. Pediatrics. 1991; 88:428–36.
Article
98. Singh A, Schaeffer EK, Reilly CW. Vertebral fractures in Duchenne muscular dystrophy patients managed with deflazacort. J Pediatr Orthop. 2018; 38:320–4.
Article
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr