Int J Stem Cells.  2020 Mar;13(1):24-45. 10.15283/ijsc19031.

Manipulated Mesenchymal Stem Cells Applications in Neurodegenerative Diseases

Affiliations
  • 1Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • 2Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • 3Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Science, Tehran, Iran

Abstract

Mesenchymal stem cells (MSCs) are multipotent stem cells that have multilinear differentiation and self-renewal abilities. These cells are immune-privileged as they express no or low level of class-II major histocompatibility complex (MHC-II) and other costimulatory molecules. Having neuroprotective and regenerative properties, MSCs can be used to ameliorate several intractable neurodegenerative disorders by affecting both innate and adaptive immune systems. Several manipulations like pretreating MSCs with different conditions or agents, and using molecules derived from MSCs or genetically manipulating them, are the common and practical ways that can be used to strengthen MSCs survival and potency. Improved MSCs can have significantly enhanced impacts on diseases compared to MSCs not manipulated. In this review, we describe some of the most important manipulations that have been exerted on MSCs to improve their therapeutic functions and their applications in ameliorating three prevalent neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.

Keyword

Mesenchymal stem cells; Neurodegenerative diseases; MSCs manipulation

Figure

  • Fig. 1 MSCs immunomodulatory effects on immune cells. MSCs have inhibitory effects on both innate and adaptive immunity. Their immunomodulatory impacts which are conducted by secretion of soluble factors and cell to cell contact include: (1) inhibition of B and NK cells proliferation and functions; (2) suppression of T cells proliferation and Th1 differentiation, induction of TH2 and Treg cells; (3) inhibition of dendritic cell and monocyte maturation and activation.

  • Fig. 2 Modifications of mesenchymal stem cells (MSCs). Preconditioning, genetic and epigenetic manipulation of MSCs and also cell free therapy are key strategies to get better survival, proliferation and function of MSCs. Manipulation of MSCs increase neural cell differentiation, regeneration of damaged tissue, angiogenesis, immunomodulation, and also improve antiapoptotic/antioxidation effects of MSCs which are used in treatment of neurodegenerative diseases.


Reference

References

1. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. 2013; Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 34:747–754. DOI: 10.1038/aps.2013.50. PMID: 23736003. PMCID: PMC4002895.
Article
2. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. 2017; Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 6:2173–2185. DOI: 10.1002/sctm.17-0129. PMID: 29076267. PMCID: PMC5702523.
Article
3. Ryan JM, Barry FP, Murphy JM, Mahon BP. 2005; Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2:8. DOI: 10.1186/1476-9255-2-8. PMID: 16045800. PMCID: PMC1215510.
Article
4. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR. 2005; T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci. 12:47–57. DOI: 10.1007/s11373-004-8183-7. PMID: 15864738.
Article
5. Eto S, Goto M, Soga M, Kaneko Y, Uehara Y, Mizuta H, Era T. 2018; Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. PLoS One. 13:e0200790. DOI: 10.1371/journal.pone.0200790. PMID: 30044827. PMCID: PMC6059447.
Article
6. Ryu CM, Yu HY, Lee HY, Shin JH, Lee S, Ju H, Paulson B, Lee S, Kim S, Lim J, Heo J, Hong KS, Chung HM, Kim JK, Shin DM, Choo MS. 2018; Longitudinal intravital imaging of transplanted mesenchymal stem cells elucidates their functional integration and therapeutic potency in an animal model of interstitial cystitis/bladder pain syndrome. Theranostics. 8:5610–5624. DOI: 10.7150/thno.27559. PMID: 30555567. PMCID: PMC6276303.
Article
7. Hass R, Kasper C, Böhm S, Jacobs R. 2011; Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 9:12. DOI: 10.1186/1478-811X-9-12. PMID: 21569606. PMCID: PMC3117820.
Article
8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999; Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. DOI: 10.1126/science.284.5411.143. PMID: 10102814.
Article
9. Okolicsanyi RK, Camilleri ET, Oikari LE, Yu C, Cool SM, van Wijnen AJ, Griffiths LR, Haupt LM. 2015; Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PLoS One. 10:e0137255. DOI: 10.1371/journal.pone.0137255. PMID: 26356539. PMCID: PMC4565666.
Article
10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. 2006; Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. DOI: 10.1080/14653240600855905. PMID: 16923606.
Article
11. Bae S, Shim SH, Park CW, Son HK, Lee HJ, Son JY, Jeon C, Kim H. 2011; Combined omics analysis identifies transmembrane 4 L6 family member 1 as a surface protein marker specific to human mesenchymal stem cells. Stem Cells Dev. 20:197–203. DOI: 10.1089/scd.2010.0127. PMID: 20486778.
Article
12. Fouillard L, Chapel A, Bories D, Bouchet S, Costa JM, Rouard H, Hervé P, Gourmelon P, Thierry D, Lopez M, Gorin NC. 2007; Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia. 21:568–570. DOI: 10.1038/sj.leu.2404550. PMID: 17252011.
Article
13. Parekkadan B, Milwid JM. 2010; Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 12:87–117. DOI: 10.1146/annurev-bioeng-070909-105309. PMID: 20415588. PMCID: PMC3759519.
Article
14. Kim HJ, Park JS. 2017; Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod. 21:1–10. DOI: 10.12717/DR.2017.21.1.001. PMID: 28484739. PMCID: PMC5409204.
Article
15. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP. 2004; Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 94:92–95. DOI: 10.1016/j.amjcard.2004.03.034. PMID: 15219514.
Article
16. Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K. 2008; Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther. 83:723–730. DOI: 10.1038/sj.clpt.6100386. PMID: 17898702.
Article
17. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gonzalez-Medina D, Gosselin R, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Levinson D, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mock C, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, AlMazroa MA, Memish ZA. 2012; Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2197–2223. DOI: 10.1016/S0140-6736(12)61689-4. PMID: 23245608.
Article
18. Tabrizi S. 2006; Neurodegenerative diseases neurobiology pathogenesis and therapeutics. J Neurol Neurosurg Psychiatr. 77:284. DOI: 10.1136/jnnp.2005.072710. PMCID: PMC2077557.
Article
19. Höglund K, Salter H. 2013; Molecular biomarkers of neurodegeneration. Expert Rev Mol Diagn. 13:845–861. DOI: 10.1586/14737159.2013.850033. PMID: 24151849.
Article
20. Metcalfe SM, Bickerton S, Fahmy T. 2017; Neurodegenerative disease: a perspective on cell-based therapy in the new era of cell-free nano-therapy. Curr Pharm Des. 23:776–783. DOI: 10.2174/1381612822666161206141744. PMID: 27924726. PMCID: PMC5662026.
Article
21. Robbins MR. 2016; Neurologic diseases in special care patients. Dent Clin North Am. 60:707–735. DOI: 10.1016/j.cden.2016.03.002. PMID: 27264859.
Article
22. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. 2015; Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 16:109–120. DOI: 10.1038/nrn3887. PMID: 25588378. PMCID: PMC4312418.
Article
23. Dugger BN, Dickson DW. 2017; Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 9:a028035. DOI: 10.1101/cshperspect.a028035. PMID: 28062563. PMCID: PMC5495060.
Article
24. Chen WW, Zhang X, Huang WJ. 2016; Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep. 13:3391–3396. DOI: 10.3892/mmr.2016.4948. PMID: 26935478. PMCID: PMC4805095.
Article
25. Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. 2015; Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol. 293:113–121. DOI: 10.1016/j.cellimm.2015.01.002. PMID: 25596473.
Article
26. Kadle RL, Abdou SA, Villarreal-Ponce AP, Soares MA, Sultan DL, David JA, Massie J, Rifkin WJ, Rabbani P, Ceradini DJ. 2018; Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion. PLoS One. 13:e0193178. DOI: 10.1371/journal.pone.0193178. PMID: 29513756. PMCID: PMC5841747.
Article
27. Andreeva E, Bobyleva P, Gornostaeva A, Buravkova L. 2017; Interaction of multipotent mesenchymal stromal and immune cells: bidirectional effects. Cytotherapy. 19:1152–1166. DOI: 10.1016/j.jcyt.2017.07.001. PMID: 28823421.
Article
28. English K, Mahon BP. 2011; Allogeneic mesenchymal stem cells: agents of immune modulation. J Cell Biochem. 112:1963–1968. DOI: 10.1002/jcb.23119. PMID: 21445861.
Article
29. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. 2002; Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 99:3838–3843. DOI: 10.1182/blood.V99.10.3838. PMID: 11986244.
Article
30. Najar M, Fayyad-Kazan M, Merimi M, Burny A, Bron D, Fayyad-Kazan H, Meuleman N, Lagneaux L. 2019; Mesenchymal stromal cells and natural killer cells: a complex story of love and hate. Curr Stem Cell Res Ther. 14:14–21. DOI: 10.2174/1574888X13666180912125736. PMID: 30207245.
Article
31. Poggi A, Varesano S, Zocchi MR. 2018; How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Front Immunol. 9:262. DOI: 10.3389/fimmu.2018.00262. PMID: 29515580. PMCID: PMC5825917.
Article
32. Berg J, Roch M, Altschüler J, Winter C, Schwerk A, Kurtz A, Steiner B. 2015; Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids. Stem Cell Rev. 11:133–149. DOI: 10.1007/s12015-014-9551-y. PMID: 25120226.
Article
33. Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L. 2018; Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci. 19:E651. DOI: 10.3390/ijms19030651. PMID: 29495345. PMCID: PMC5877512.
Article
34. Jang S, Kang YH, Ullah I, Shivakumar SB, Rho GJ, Cho YC, Sung IY, Park BW. 2018; Cholinergic nerve differentiation of mesenchymal stem cells derived from long-term cryopreserved human dental pulp in vitro and analysis of their motor nerve regeneration potential in vivo. Int J Mol Sci. 19:E2434. DOI: 10.3390/ijms19082434. PMID: 30126144. PMCID: PMC6122009.
Article
35. Jeon HJ, Park J, Shin JH, Chang MS. 2017; Insulin-like growth factor binding protein-6 released from human mesenchymal stem cells confers neuronal protection through IGF-1R-mediated signaling. Int J Mol Med. 40:1860–1868. DOI: 10.3892/ijmm.2017.3173. PMID: 29039467. PMCID: PMC5716453.
Article
36. Ding H, Zhang H, Ding H, Li D, Yi X, Ma X, Li R, Huang M, Ju X. 2017; Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol. 14:693–701. DOI: 10.1038/cmi.2015.99. PMID: 26707403. PMCID: PMC5549604.
Article
37. Oh SH, Choi C, Noh JE, Lee N, Jeong YW, Jeon I, Shin JM, Kim JH, Kim HJ, Lee JM, Kim HS, Kim OJ, Song J. 2018; Interleukin-1 receptor antagonist-mediated neuroprotection by umbilical cord-derived mesenchymal stromal cells following transplantation into a rodent stroke model. Exp Mol Med. 50:22. DOI: 10.1038/s12276-018-0041-1. PMID: 29650950. PMCID: PMC5938060.
Article
38. Laroni A, de Rosbo NK, Uccelli A. 2015; Mesenchymal stem cells for the treatment of neurological diseases: immunoregulation beyond neuroprotection. Immunol Lett. 168:183–190. DOI: 10.1016/j.imlet.2015.08.007. PMID: 26296458.
Article
39. Creusot RJ, Postigo-Fernandez J, Teteloshvili N. 2018; Altered function of antigen-presenting cells in type 1 diabetes: a challenge for antigen-specific immunotherapy? Diabetes. 67:1481–1494. DOI: 10.2337/db17-1564. PMID: 30030289. PMCID: PMC6054431.
Article
40. Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. 2017; Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta. 59:87–95. DOI: 10.1016/j.placenta.2017.04.003. PMID: 28411943.
Article
41. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. 2006; Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 107:1484–1490. DOI: 10.1182/blood-2005-07-2775. PMID: 16239427.
Article
42. Wu J, Ji C, Cao F, Lui H, Xia B, Wang L. 2017; Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep. 37:BSR20160436. DOI: 10.1042/BSR20160436. PMID: 28096318. PMCID: PMC5398252.
Article
43. Zhang Y, Ge XH, Guo XJ, Guan SB, Li XM, Gu W, Xu WG. 2017; Bone marrow mesenchymal stem cells inhibit the function of dendritic cells by secreting galectin-1. Biomed Res Int. 2017:3248605. DOI: 10.1155/2017/3248605. PMID: 28713822. PMCID: PMC5497648.
Article
44. Arsenijevic A, Harrell CR, Fellabaum C, Volarevic V. 2017; Mesenchymal stem cells as new therapeutic agents for the treatment of primary biliary cholangitis. Anal Cell Pathol (Amst). 2017:7492836. DOI: 10.1155/2017/7492836. PMID: 29410945. PMCID: PMC5749170.
Article
45. Poggi A, Prevosto C, Massaro AM, Negrini S, Urbani S, Pierri I, Saccardi R, Gobbi M, Zocchi MR. 2005; Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol. 175:6352–6360. DOI: 10.4049/jimmunol.175.10.6352. PMID: 16272287.
Article
46. Crop MJ, Korevaar SS, de Kuiper R, IJzermans JN, van Besouw NM, Baan CC, Weimar W, Hoogduijn MJ. 2011; Human mesenchymal stem cells are susceptible to lysis by CD8(+) T cells and NK cells. Cell Transplant. 20:1547–1559. DOI: 10.3727/096368910X564076. PMID: 21396164.
Article
47. Fontaine MJ, Shih H, Schäfer R, Pittenger MF. 2016; Unraveling the mesenchymal stromal cells' paracrine immunomodulatory effects. Transfus Med Rev. 30:37–43. DOI: 10.1016/j.tmrv.2015.11.004. PMID: 26689863.
Article
48. Tamura H. 2018; Immunopathogenesis and immunotherapy of multiple myeloma. Int J Hematol. 107:278–285. DOI: 10.1007/s12185-018-2405-7. PMID: 29368256.
Article
49. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G. 2005; Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 35:1482–1490. DOI: 10.1002/eji.200425405. PMID: 15827960.
Article
50. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. 2006; Human mesenchymal stem cells modulate B-cell functions. Blood. 107:367–372. DOI: 10.1182/blood-2005-07-2657. PMID: 16141348.
Article
51. Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. 2016; Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 18:160–171. DOI: 10.1016/j.jcyt.2015.10.011. PMID: 26794710.
Article
52. Tabera S, Pérez-Simón JA, Díez-Campelo M, Sánchez-Abarca LI, Blanco B, López A, Benito A, Ocio E, Sánchez-Guijo FM, Cañizo C, San Miguel JF. 2008; The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 93:1301–1309. DOI: 10.3324/haematol.12857. PMID: 18641017.
Article
53. Cheng L, Zhang K, Wu S, Cui M, Xu T. 2017; Focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Stem Cells Int. 2017:6305295. DOI: 10.1155/2017/6305295. PMID: 29410682. PMCID: PMC5749272.
Article
54. Silva LHA, Antunes MA, Dos Santos CC, Weiss DJ, Cruz FF, Rocco PRM. 2018; Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 9:45. DOI: 10.1186/s13287-018-0802-8. PMID: 29482654. PMCID: PMC5828113.
Article
55. Hu C, Li L. 2018; Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 22:1428–1442. DOI: 10.1111/jcmm.13492. PMID: 29392844. PMCID: PMC5824372.
Article
56. Orbay H, Tobita M, Mizuno H. 2012; Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int. 2012:461718. DOI: 10.1155/2012/461718. PMID: 22666271. PMCID: PMC3361347.
Article
57. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M. 2014; Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A. 111:14888–14893. DOI: 10.1073/pnas.1408301111. PMID: 25267620. PMCID: PMC4205618.
Article
58. Jang MJ, You D, Park JY, Kim K, Aum J, Lee C, Song G, Shin HC, Suh N, Kim YM, Kim CS. 2018; Hypoxic preconditioned mesenchymal stromal cell therapy in a rat model of renal ischemia-reperfusion injury: development of optimal protocol to potentiate therapeutic efficacy. Int J Stem Cells. 11:157–167. DOI: 10.15283/ijsc18073. PMID: 30497128. PMCID: PMC6285294.
Article
59. Kheirandish M, Gavgani SP, Samiee S. 2017; The effect of hypoxia preconditioning on the neural and stemness genes expression profiling in human umbilical cord blood mesenchymal stem cells. Transfus Apher Sci. 56:392–399. DOI: 10.1016/j.transci.2017.03.015. PMID: 28428031.
Article
60. Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WC. 2016; Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response. Stem Cells Int. 2016:3924858. DOI: 10.1155/2016/3924858. PMID: 27822228. PMCID: PMC5086389.
Article
61. Kim YS, Noh MY, Cho KA, Kim H, Kwon MS, Kim KS, Kim J, Koh SH, Kim SH. 2015; Hypoxia/reoxygenation-preconditioned human bone marrow-derived mesenchymal stromal cells rescue ischemic rat cortical neurons by enhancing trophic factor release. Mol Neurobiol. 52:792–803. DOI: 10.1007/s12035-014-8912-5. PMID: 25288154.
Article
62. Engela AU, Baan CC, Peeters AM, Weimar W, Hoogduijn MJ. 2013; Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells. Cell Transplant. 22:41–54. DOI: 10.3727/096368912X636984. PMID: 22472599.
Article
63. English K, Tonlorenzi R, Cossu G, Wood KJ. 2013; Mesoangioblasts suppress T cell proliferation through IDO and PGE-2-dependent pathways. Stem Cells Dev. 22:512–523. DOI: 10.1089/scd.2012.0386. PMID: 22913669. PMCID: PMC3549627.
Article
64. Lee JH, Yoon YM, Lee SH. 2017; Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt axis. Int J Mol Sci. 18:E1320. DOI: 10.3390/ijms18061320. PMID: 28635661. PMCID: PMC5486141.
65. Han YS, Lee JH, Yoon YM, Yun CW, Noh H, Lee SH. 2016; Hypoxia-induced expression of cellular prion protein improves the therapeutic potential of mesenchymal stem cells. Cell Death Dis. 7:e2395. DOI: 10.1038/cddis.2016.310. PMID: 27711081. PMCID: PMC5133977.
Article
66. Potier E, Ferreira E, Meunier A, Sedel L, Logeart-Avramoglou D, Petite H. 2007; Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 13:1325–1331. DOI: 10.1089/ten.2006.0325. PMID: 17518749.
Article
67. Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, Logeart-Avramoglou D, Petite H. 2011; Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med. 15:1505–1514. DOI: 10.1111/j.1582-4934.2010.01138.x. PMID: 20716129. PMCID: PMC3823195.
Article
68. Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, Weil B, Meldrum DR. 2009; Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg. 88:1036–1043. DOI: 10.1016/j.athoracsur.2009.02.093. PMID: 19699961.
Article
69. François M, Romieu-Mourez R, Li M, Galipeau J. 2012; Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 20:187–195. DOI: 10.1038/mt.2011.189. PMID: 21934657.
Article
70. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. 2014; Immunobiology of mesenchymal stem cells. Cell Death Differ. 21:216–225. DOI: 10.1038/cdd.2013.158. PMID: 24185619. PMCID: PMC3890955.
Article
71. Carrero R, Cerrada I, Lledó E, Dopazo J, García-García F, Rubio MP, Trigueros C, Dorronsoro A, Ruiz-Sauri A, Montero JA, Sepúlveda P. 2012; IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB. Stem Cell Rev. 8:905–916. DOI: 10.1007/s12015-012-9364-9. PMID: 22467443. PMCID: PMC3412085.
Article
72. Fan H, Zhao G, Liu L, Liu F, Gong W, Liu X, Yang L, Wang J, Hou Y. 2012; Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol. 9:473–481. DOI: 10.1038/cmi.2012.40. PMID: 23085948. PMCID: PMC4002219.
Article
73. Duijvestein M, Wildenberg ME, Welling MM, Hennink S, Molendijk I, van Zuylen VL, Bosse T, Vos AC, de Jonge-Muller ES, Roelofs H, van der Weerd L, Verspaget HW, Fibbe WE, te Velde AA, van den Brink GR, Hommes DW. 2011; Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells. 29:1549–1558. DOI: 10.1002/stem.698. PMID: 21898680.
Article
74. Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, Che Y, Ou L, Liu L, Kong D. 2011; SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2:845–854. DOI: 10.1007/s13238-011-1097-z. PMID: 22058039. PMCID: PMC4875294.
Article
75. Linares GR, Chiu CT, Scheuing L, Leng Y, Liao HM, Maric D, Chuang DM. 2016; Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease. Exp Neurol. 281:81–92. DOI: 10.1016/j.expneurol.2016.04.003. PMID: 27085395.
Article
76. Wei N, Yu SP, Gu X, Taylor TM, Song D, Liu XF, Wei L. 2013; Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant. 22:977–991. DOI: 10.3727/096368912X657251. PMID: 23031629.
Article
77. Schäfer R, Spohn G, Baer PC. 2016; Mesenchymal stem/stromal cells in regenerative medicine: can preconditioning strategies improve therapeutic efficacy? Transfus Med Hemother. 43:256–267. DOI: 10.1159/000447458. PMID: 27721701. PMCID: PMC5040900.
Article
78. Xu X, Zhu F, Zhang M, Zeng D, Luo D, Liu G, Cui W, Wang S, Guo W, Xing W, Liang H, Li L, Fu X, Jiang J, Huang H. 2013; Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs. 197:103–113. DOI: 10.1159/000342921. PMID: 23207453.
Article
79. Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, Sun BC, Hideg K, Kuppusamy P. 2009; Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther. 329:543–550. DOI: 10.1124/jpet.109.150839. PMID: 19218529. PMCID: PMC2672865.
Article
80. Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC. 2012; Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res. 2:148–159.
81. Yao Y, Zhang F, Wang L, Zhang G, Wang Z, Chen J, Gao X. 2009; Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci. 16:74. DOI: 10.1186/1423-0127-16-74. PMID: 19691857. PMCID: PMC2739513.
Article
82. Cui X, Wang H, Guo H, Wang C, Ao H, Liu X, Tan YZ. 2010; Transplantation of mesenchymal stem cells preconditioned with diazoxide, a mitochondrial ATP-sensitive potassium channel opener, promotes repair of myocardial infarction in rats. Tohoku J Exp Med. 220:139–147. DOI: 10.1620/tjem.220.139. PMID: 20139665.
Article
83. Liu J, Zhu P, Song P, Xiong W, Chen H, Peng W, Wang S, Li S, Fu Z, Wang Y, Wang H. 2015; Pretreatment of adipose derived stem cells with curcumin facilitates myocardial recovery via antiapoptosis and angiogenesis. Stem Cells Int. 2015:638153. DOI: 10.1155/2015/638153. PMID: 26074974. PMCID: PMC4436501.
Article
84. Bhatti FU, Mehmood A, Latief N, Zahra S, Cho H, Khan SN, Riazuddin S. 2017; Vitamin E protects rat mesenchymal stem cells against hydrogen peroxide-induced oxidative stress in vitro and improves their therapeutic potential in surgically-induced rat model of osteoarthritis. Osteoarthritis Cartilage. 25:321–331. DOI: 10.1016/j.joca.2016.09.014. PMID: 27693502.
Article
85. Qiao PF, Yao L, Zhang XC, Li GD, Wu DQ. 2015; Heat shock pretreatment improves stem cell repair following ischemia-reperfusion injury via autophagy. World J Gastroenterol. 21:12822–12834. DOI: 10.3748/wjg.v21.i45.12822. PMID: 26668506. PMCID: PMC4671037.
Article
86. Chen X, Wang Q, Li X, Wang Q, Xie J, Fu X. 2018; Heat shock pretreatment of mesenchymal stem cells for inhibiting the apoptosis of ovarian granulosa cells enhanced the repair effect on chemotherapy-induced premature ovarian failure. Stem Cell Res Ther. 9:240. DOI: 10.1186/s13287-018-0964-4. PMID: 30257708. PMCID: PMC6158904.
87. Hoogduijn MJ, de Witte SF, Luk F, van den Hout-van Vroonhoven MC, Ignatowicz L, Catar R, Strini T, Korevaar SS, van IJcken WF, Betjes MG, Franquesa M, Moll G, Baan CC. 2016; Effects of freeze-thawing and intravenous infusion on mesenchymal stromal cell gene expression. Stem Cells Dev. 25:586–597. DOI: 10.1089/scd.2015.0329. PMID: 26914168.
Article
88. Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK, Kirk AD, Galipeau J. 2016; Cryopreserved mesenchymal stromal cells are susceptible to T-cell mediated apoptosis which is partly rescued by IFNγ licensing. Stem Cells. 34:2429–2442. DOI: 10.1002/stem.2415. PMID: 27299362. PMCID: PMC5016228.
Article
89. Pawitan JA. 2014; Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014:965849. DOI: 10.1155/2014/965849. PMID: 25530971. PMCID: PMC4229962.
Article
90. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT. 2013; Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond). 124:165–176. DOI: 10.1042/CS20120226. PMID: 22876972.
Article
91. Arutyunyan I, Fatkhudinov T, Kananykhina E, Usman N, Elchaninov A, Makarov A, Bolshakova G, Goldshtein D, Sukhikh G. 2016; Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study. Stem Cell Res Ther. 7:46. DOI: 10.1186/s13287-016-0305-4. PMID: 27001300. PMCID: PMC4802928.
Article
92. Sriramulu S, Banerjee A, Di Liddo R, Jothimani G, Gopinath M, Murugesan R, Marotta F, Pathak S. 2018; Concise review on clinical applications of conditioned medium derived from human umbilical cord-mesenchymal stem cells (UC-MSCs). Int J Hematol Oncol Stem Cell Res. 12:230–234.
93. Gama KB, Santos DS, Evangelista AF, Silva DN, de Alcântara AC, Dos Santos RR, Soares MBP, Villarreal CF. 2018; Conditioned medium of bone marrow-derived mesenchymal stromal cells as a therapeutic approach to neuropathic pain: a preclinical evaluation. Stem Cells Int. 2018:8179013. DOI: 10.1155/2018/8179013. PMID: 29535781. PMCID: PMC5831939.
Article
94. Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, Middleton J, Kehoe O. 2017; Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Sci Rep. 7:18019. DOI: 10.1038/s41598-017-18144-w. PMID: 29269885. PMCID: PMC5740178.
Article
95. Hwang B, Liles WC, Waworuntu R, Mulligan MS. 2016; Pretreatment with bone marrow-derived mesenchymal stromal cell-conditioned media confers pulmonary ischemic tolerance. J Thorac Cardiovasc Surg. 151:841–849. DOI: 10.1016/j.jtcvs.2015.11.043. PMID: 26896360. PMCID: PMC4761408.
Article
96. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP. 2011; Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6:206–214. DOI: 10.1016/j.scr.2011.01.001. PMID: 21419744.
Article
97. Xu X, Li D, Li X, Shi Q, Ju X. 2017; Mesenchymal stem cell conditioned medium alleviates oxidative stress injury induced by hydrogen peroxide via regulating miR143 and its target protein in hepatocytes. BMC Immunol. 18:51. DOI: 10.1186/s12865-017-0232-x. PMID: 29258429. PMCID: PMC5735881.
Article
98. Kadekar D, Rangole S, Kale V, Limaye L. 2016; Conditioned medium from placental mesenchymal stem cells reduces oxidative stress during the cryopreservation of ex vivo expanded umbilical cord blood cells. PLoS One. 11:e016546. DOI: 10.1371/journal.pone.0165466. PMID: 27780236. PMCID: PMC5079553.
Article
99. Lai RC, Yeo RW, Lim SK. 2015; Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 40:82–88. DOI: 10.1016/j.semcdb.2015.03.001. PMID: 25765629.
Article
100. Lai RC, Chen TS, Lim SK. 2011; Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 6:481–492. DOI: 10.2217/rme.11.35. PMID: 21749206.
Article
101. Phinney DG, Pittenger MF. 2017; Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 35:851–858. DOI: 10.1002/stem.2575. PMID: 28294454.
Article
102. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK. 2007; Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 110:1362–1369. DOI: 10.1182/blood-2006-12-063412. PMID: 17483296.
Article
103. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, Wang W, Yerebakan C, Li W, Gaebel R, Li RK, Vollmar B, Steinhoff G, Ma N. 2009; Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 77:370–376. DOI: 10.1016/j.mvr.2009.02.001. PMID: 19249320.
104. Poh KK, Sperry E, Young RG, Freyman T, Barringhaus KG, Thompson CA. 2007; Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, "off-the-shelf", cellular cardiomyoplasty strategy. Int J Cardiol. 117:360–364. DOI: 10.1016/j.ijcard.2006.04.092. PMID: 16889857.
Article
105. Lou G, Chen Z, Zheng M, Liu Y. 2017; Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 49:e346. DOI: 10.1038/emm.2017.63. PMID: 28620221. PMCID: PMC5519012.
Article
106. Ghidoni R, Paterlini A, Albertini V, Glionna M, Monti E, Schiaffonati L, Benussi L, Levy E, Binetti G. 2011; Cystatin C is released in association with exosomes: a new tool of neuronal communication which is unbalanced in Alzheimer's disease. Neurobiol Aging. 32:1435–1442. DOI: 10.1016/j.neurobiolaging.2009.08.013. PMID: 19773092. PMCID: PMC2891183.
Article
107. Putz U, Howitt J, Lackovic J, Foot N, Kumar S, Silke J, Tan SS. 2008; Nedd4 family-interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4 family proteins. J Biol Chem. 283:32621–32627. DOI: 10.1074/jbc.M804120200. PMID: 18819914.
Article
108. Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, Cao Y, Lin FY. 2017; Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 34:3388–3396. DOI: 10.1089/neu.2017.5063. PMID: 28665182.
Article
109. Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. 2017; Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:16214. DOI: 10.1038/s41598-017-15376-8. PMID: 29176667. PMCID: PMC5701135.
Article
110. Cha JM, Shin EK, Sung JH, Moon GJ, Kim EH, Cho YH, Park HD, Bae H, Kim J, Bang OY. 2018; Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep. 8:1171. DOI: 10.1038/s41598-018-19211-6. PMID: 29352188. PMCID: PMC5775399.
Article
111. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. 2012; Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant. 27:3037–3042. DOI: 10.1093/ndt/gfs168. PMID: 22851627.
Article
112. Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z, Li H, Liu Z, Shi C, Duan F, Xiao Y. 2016; Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res. 64:831–840. DOI: 10.1007/s12026-016-8798-6. PMID: 27115513.
Article
113. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. 2012; Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 147:47–54. DOI: 10.1016/j.imlet.2012.06.001. PMID: 22705267.
Article
114. Wang H, Zheng R, Chen Q, Shao J, Yu J, Hu S. 2017; Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Res Ther. 8:211. DOI: 10.1186/s13287-017-0662-7. PMID: 28969681. PMCID: PMC5623961.
Article
115. Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, Ye K, Qiao F, Dai Y, Wang H, Wen X, Lin J, Hu J. 2017; Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncol Rep. 38:1013–1020. DOI: 10.3892/or.2017.5729. PMID: 28627682.
Article
116. Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, Rosenzwajg M, Matthay MA, Lee JW. 2015; Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 192:324–336. DOI: 10.1164/rccm.201410-1765OC. PMID: 26067592. PMCID: PMC4584251.
Article
117. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G. 2009; Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 20:1053–1067. DOI: 10.1681/ASN.2008070798. PMID: 19389847. PMCID: PMC2676194.
Article
118. Liu D, Kou X, Chen C, Liu S, Liu Y, Yu W, Yu T, Yang R, Wang R, Zhou Y, Shi S. 2018; Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 28:918–933. DOI: 10.1038/s41422-018-0070-2. PMID: 30030518. PMCID: PMC6123409.
Article
119. Abreu SC, Weiss DJ, Rocco PR. 2016; Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther. 7:53. DOI: 10.1186/s13287-016-0317-0. PMID: 27075363. PMCID: PMC4831172.
Article
120. Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomón C, Aguayo C. 2016; Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol. 7:24. DOI: 10.3389/fphys.2016.00024. PMID: 26903875. PMCID: PMC4746282.
Article
121. Penberthy KK, Ravichandran KS. 2016; Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev. 269:44–59. DOI: 10.1111/imr.12376. PMID: 26683144. PMCID: PMC4685734.
Article
122. Eslaminejad MB, Fani N, Shahhoseini M. 2013; Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell J. 15:1–10.
123. Huang B, Li G, Jiang XH. 2015; Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther. 6:35. DOI: 10.1186/s13287-015-0018-0. PMID: 25890062. PMCID: PMC4365520.
Article
124. Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. 2014; microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther. 5:130. DOI: 10.1186/scrt520. PMID: 25418617. PMCID: PMC4446090.
Article
125. Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC. 2018; Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant. 27:349–363. DOI: 10.1177/0963689717723636. PMID: 29692195. PMCID: PMC6038041.
Article
126. Griffin M, Greiser U, Barry F, O'Brien T, Ritter T. 2010; Genetically modified mesenchymal stem cells and their clinical potential in acute cardiovascular disease. Discov Med. 9:219–223.
127. Wang W, Xu X, Li Z, Lendlein A, Ma N. 2014; Genetic engineering of mesenchymal stem cells by non-viral gene delivery. Clin Hemorheol Microcirc. 58:19–48. DOI: 10.3233/CH-141883. PMID: 25227201.
Article
128. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. 2001; Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation. 104(12 Suppl 1):I218–I222. DOI: 10.1161/hc37t1.094896. PMID: 11568059.
Article
129. Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ. 2010; Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther. 21:1513–1526. DOI: 10.1089/hum.2010.165. PMID: 20825283. PMCID: PMC2978545.
Article
130. Jo J, Nagaya N, Miyahara Y, Kataoka M, Harada-Shiba M, Kangawa K, Tabata Y. 2007; Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng. 13:313–322. DOI: 10.1089/ten.2006.0133. PMID: 17518565.
Article
131. Wyse RD, Dunbar GL, Rossignol J. 2014; Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci. 15:1719–1745. DOI: 10.3390/ijms15021719. PMID: 24463293. PMCID: PMC3958818.
Article
132. Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J, Pratt R, Dzau VJ. 2009; Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol. 46:370–377. DOI: 10.1016/j.yjmcc.2008.11.016. PMID: 19109969. PMCID: PMC2710029.
Article
133. Chen SL, Zhu CC, Liu YQ, Tang LJ, Yi L, Yu BJ, Wang DJ. 2009; Mesenchymal stem cells genetically modified with the angiopoietin-1 gene enhanced arteriogenesis in a porcine model of chronic myocardial ischaemia. J Int Med Res. 37:68–78. DOI: 10.1177/147323000903700108. PMID: 19215675.
Article
134. Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ. 2010; Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res. 106:1753–1762. DOI: 10.1161/CIRCRESAHA.109.196030. PMID: 20378860. PMCID: PMC2884066.
Article
135. Wang M, Tan J, Wang Y, Meldrum KK, Dinarello CA, Meldrum DR. 2009; IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction. Proc Natl Acad Sci U S A. 106:17499–17504. DOI: 10.1073/pnas.0908924106. PMID: 19805173. PMCID: PMC2752405.
Article
136. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H. 2004; Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 11:1155–1164. DOI: 10.1038/sj.gt.3302276. PMID: 15141157.
Article
137. Maestroni GJ, Hertens E, Galli P. 1999; Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci. 55:663–667. DOI: 10.1007/s000180050322. PMID: 10357234.
Article
138. Xu XP, Huang LL, Hu SL, Han JB, He HL, Xu JY, Xie JF, Liu AR, Liu SQ, Liu L, Huang YZ, Guo FM, Yang Y, Qiu HB. 2018; Genetic modification of mesenchymal stem cells overexpressing angiotensin II type 2 receptor increases cell migration to injured lung in LPS-induced acute lung injury mice. Stem Cells Transl Med. 7:721–730. DOI: 10.1002/sctm.17-0279. PMID: 30133167. PMCID: PMC6186265.
Article
139. Dos Santos Picanco LC, Ozela PF, de Fatima de Brito Brito M, Pinheiro AA, Padilha EC, Braga FS, de Paula da Silva CHT, Dos Santos CBR, Rosa JMC, da Silva Hage-Melim LI. 2018; Alzheimer's disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem. 25:3141–3159. DOI: 10.2174/0929867323666161213101126. PMID: 30191777.
Article
140. Mroczko B, Groblewska M, Litman-Zawadzka A, Kornhuber J, Lewczuk P. 2018; Cellular receptors of amyloid β oligomers (AβOs) in Alzheimer's disease. Int J Mol Sci. 19:E1884. DOI: 10.3390/ijms19071884. PMID: 29954063. PMCID: PMC6073792.
141. Zheng JJ, Li WX, Liu JQ, Guo YC, Wang Q, Li GH, Dai SX, Huang JF. 2018; Low expression of aging-related NRXN3 is associated with Alzheimer disease: a systematic review and meta-analysis. Medicine (Baltimore). 97:e11343. DOI: 10.1097/MD.0000000000011343. PMID: 29995770. PMCID: PMC6076205.
142. Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. 2014; Potential of bone marrow mesenchymal stem cells in management of Alzheimer's disease in female rats. Cell Biol Int. 38:1367–1383. DOI: 10.1002/cbin.10331. PMID: 25044885.
Article
143. Bali P, Lahiri DK, Banik A, Nehru B, Anand A. 2017; Potential for stem cells therapy in Alzheimer's disease: do neurotrophic factors play critical role? Curr Alzheimer Res. 14:208–220. DOI: 10.2174/1567205013666160314145347. PMID: 26971940. PMCID: PMC5880623.
Article
144. Libro R, Diomede F, Scionti D, Piattelli A, Grassi G, Pollastro F, Bramanti P, Mazzon E, Trubiani O. 2016; Cannabidiol modulates the expression of Alzheimer's disease-related genes in mesenchymal stem cells. Int J Mol Sci. 18:E26. DOI: 10.3390/ijms18010026. PMID: 28025562. PMCID: PMC5297661.
Article
145. Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW, Dong YR, Liu JR, Guo HD. 2018; Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 32:654–668. DOI: 10.1096/fj.201700600R. PMID: 28970251.
Article
146. Park SE, Lee J, Chang EH, Kim JH, Sung JH, Na DL, Chang JW. 2016; Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer's disease: neurogenesis induced by MSCs via activin A. Arch Pharm Res. 39:1171–1179. DOI: 10.1007/s12272-016-0799-4. PMID: 27515053.
Article
147. Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH, Oh JS, Shim SM, Na DL, Oh W, Chang JW. 2015; GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model. Stem Cells Dev. 24:2378–2390. DOI: 10.1089/scd.2014.0487. PMID: 26154268. PMCID: PMC4598918.
Article
148. Lee JK, Schuchman EH, Jin HK, Bae JS. 2012; Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer's disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells. 30:1544–1555. DOI: 10.1002/stem.1125. PMID: 22570192.
Article
149. Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo SW, Lee JI, Na DL, Yang YS, Oh W, Chang JW. 2012; Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ. 19:680–691. DOI: 10.1038/cdd.2011.140. PMID: 22015609. PMCID: PMC3307982.
Article
150. Lee NK, Park SE, Kwon SJ, Shim S, Byeon Y, Kim JH, Na DL, Chang JW. 2017; Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer's disease model. Sci Rep. 7:39340. DOI: 10.1038/srep39340. PMID: 28051110. PMCID: PMC5209736.
Article
151. Kim DH, Lim H, Lee D, Choi SJ, Oh W, Yang YS, Oh JS, Hwang HH, Jeon HB. 2018; Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer's disease model. Sci Rep. 8:354. DOI: 10.1038/s41598-017-18542-0. PMID: 29321508. PMCID: PMC5762817.
Article
152. Oh SH, Kim HN, Park HJ, Shin JY, Lee PH. 2015; Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer's disease model. Cell Transplant. 24:1097–1109. DOI: 10.3727/096368914X679237. PMID: 24612635.
Article
153. Liew LC, Katsuda T, Gailhouste L, Nakagama H, Ochiya T. 2017; Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer's disease. Int Immunol. 29:11–19. DOI: 10.1093/intimm/dxx002. PMID: 28184439.
Article
154. Liu Z, Wang C, Wang X, Xu S. 2015; Therapeutic effects of transplantation of as-miR-937-expressing mesenchymal stem cells in murine model of Alzheimer's disease. Cell Physiol Biochem. 37:321–330. DOI: 10.1159/000430356. PMID: 26316079.
Article
155. Tan XF, Qin JB, Jin GH, Tian ML, Li HM, Zhu HX, Zhang XH, Shi JH, Huang Z. 2010; Effects of Brn-4 on the neuronal differentiation of neural stem cells derived from rat midbrain. Cell Biol Int. 34:877–882. DOI: 10.1042/CBI20100214. PMID: 20524937.
Article
156. Li G, Peskind ER, Millard SP, Chi P, Sokal I, Yu CE, Bekris LM, Raskind MA, Galasko DR, Montine TJ. 2009; Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects. PLoS One. 4:e5424. DOI: 10.1371/journal.pone.0005424. PMID: 19412541. PMCID: PMC2671606.
Article
157. Song MS, Learman CR, Ahn KC, Baker GB, Kippe J, Field EM, Dunbar GL. 2015; In vitro validation of effects of BDNF-expressing mesenchymal stem cells on neurodegeneration in primary cultured neurons of APP/PS1 mice. Neuroscience. 307:37–50. DOI: 10.1016/j.neuroscience.2015.08.011. PMID: 26297896.
Article
158. Avanzino L, Lagravinese G, Abbruzzese G, Pelosin E. 2018; Relationships between gait and emotion in Parkinson's disease: a narrative review. Gait Posture. 65:57–64. DOI: 10.1016/j.gaitpost.2018.06.171. PMID: 30558947.
Article
159. Kalia LV, Lang AE. 2015; Parkinson's disease. Lancet. 386:896–912. DOI: 10.1016/S0140-6736(14)61393-3. PMID: 25904081.
Article
160. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. 1997; Alpha-synuclein in Lewy bodies. Nature. 388:839–840. DOI: 10.1038/42166. PMID: 9278044.
161. Stoker TB, Barker RA. 2018; Regenerative therapies for Parkinson's disease: an update. BioDrugs. 32:357–366. DOI: 10.1007/s40259-018-0294-1. PMID: 30027398.
Article
162. Lekishvili T, Hesketh S, Brazier MW, Brown DR. 2006; Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMDA receptor expression. Eur J Neurosci. 24:3017–3025. DOI: 10.1111/j.1460-9568.2006.05207.x. PMID: 17156363.
Article
163. Oh SH, Kim HN, Park HJ, Shin JY, Bae EJ, Sunwoo MK, Lee SJ, Lee PH. 2016; Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-mediated endocytosis in a Parkinsonian model. Cell Rep. 14:835–849. DOI: 10.1016/j.celrep.2015.12.075. PMID: 26776513.
Article
164. Wang Y, Yang J, Li H, Wang X, Zhu L, Fan M, Wang X. 2013; Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease. PLoS One. 8:e54296. DOI: 10.1371/journal.pone.0054296. PMID: 23342124. PMCID: PMC3546985.
Article
165. Jinfeng L, Yunliang W, Xinshan L, Yutong W, Shanshan W, Peng X, Xiaopeng Y, Zhixiu X, Qingshan L, Honglei Y, Xia C, Hongwei W, Bingzhen C. 2016; Therapeutic effects of CUR-activated human umbilical cord mesenchymal stem cells on 1-methyl-4-phenylpyridine-induced Parkinson's disease cell model. Biomed Res Int. 2016:9140541. DOI: 10.1155/2016/9140541. PMID: 27340670. PMCID: PMC4906196.
Article
166. Chierchia A, Chirico N, Boeri L, Raimondi I, Riva GA, Raimondi MT, Tunesi M, Giordano C, Forloni G, Albani D. 2017; Secretome released from hydrogel-embedded adipose mesenchymal stem cells protects against the Parkinson's disease related toxin 6-hydroxydopamine. Eur J Pharm Biopharm. 121:113–120. DOI: 10.1016/j.ejpb.2017.09.014. PMID: 28965958. PMCID: PMC5656105.
Article
167. Yao Y, Huang C, Gu P, Wen T. 2016; Combined MSC-secreted factors and neural stem cell transplantation promote functional recovery of PD rats. Cell Transplant. 25:1101–1113. DOI: 10.3727/096368915X689938. PMID: 26607204.
Article
168. Mei J, Niu C. 2015; Effects of engineered conserved dopamine neurotrophic factor-expressing bone marrow stromal cells on dopaminergic neurons following 6-OHDA administrations. Mol Med Rep. 11:1207–1213. DOI: 10.3892/mmr.2014.2878. PMID: 25373844.
Article
169. Moradian H, Keshvari H, Fasehee H, Dinarvand R, Faghihi S. 2017; Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: a potential tool for treatment of Parkinson's disease. Mater Sci Eng C Mater Biol Appl. 76:934–943. DOI: 10.1016/j.msec.2017.02.178. PMID: 28482609.
Article
170. Barzilay R, Ben-Zur T, Bulvik S, Melamed E, Offen D. 2009; Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev. 18:591–601. DOI: 10.1089/scd.2008.0138. PMID: 19298173.
Article
171. Liu XS, Li JF, Wang SS, Wang YT, Zhang YZ, Yin HL, Geng S, Gong HC, Han B, Wang YL. 2014; Human umbilical cord mesenchymal stem cells infected with adenovirus expressing HGF promote regeneration of damaged neuron cells in a Parkinson's disease model. Biomed Res Int. 2014:909657. DOI: 10.1155/2014/909657. PMID: 25276829. PMCID: PMC4167956.
172. Ghosh R, Tabrizi SJ. 2018; Clinical features of Huntington's disease. Adv Exp Med Biol. 1049:1–28. DOI: 10.1007/978-3-319-71779-1_1. PMID: 29427096.
Article
173. Pandey M, Rajamma U. 2018; Huntington's disease: the coming of age. J Genet. 97:649–664. DOI: 10.1007/s12041-018-0957-1. PMID: 30027901.
Article
174. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. 2010; Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 5:933–946. DOI: 10.2217/rme.10.72. PMID: 21082892. PMCID: PMC3017479.
Article
175. Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL. 2013; Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther. 4:130. DOI: 10.1186/scrt341. PMID: 24456799. PMCID: PMC3854759.
Article
176. Rossignol J, Fink K, Davis K, Clerc S, Crane A, Matchynski J, Lowrance S, Bombard M, Dekorver N, Lescaudron L, Dunbar GL. 2014; Transplants of adult mesenchymal and neural stem cells provide neuroprotection and behavioral sparing in a transgenic rat model of Huntington's disease. Stem Cells. 32:500–509. DOI: 10.1002/stem.1508. PMID: 23939879.
Article
177. Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, Yeshurun M, Djaldetti R, Cohen Y, Melamed E, Offen D. 2012; Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington's disease. Exp Neurol. 234:417–427. DOI: 10.1016/j.expneurol.2011.12.045. PMID: 22285250.
Article
178. Lin YT, Chern Y, Shen CK, Wen HL, Chang YC, Li H, Cheng TH, Hsieh-Li HM. 2011; Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models. PLoS One. 6:e22924. DOI: 10.1371/journal.pone.0022924. PMID: 21850243. PMCID: PMC3151281.
Article
179. Olson SD, Kambal A, Pollock K, Mitchell GM, Stewart H, Kalomoiris S, Cary W, Nacey C, Pepper K, Nolta JA. 2012; Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci. 49:271–281. DOI: 10.1016/j.mcn.2011.12.001. PMID: 22198539. PMCID: PMC3784251.
Article
180. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL. 2010; Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res. 214:193–200. DOI: 10.1016/j.bbr.2010.05.023. PMID: 20493905.
Article
181. Olson SD, Pollock K, Kambal A, Cary W, Mitchell GM, Tempkin J, Stewart H, McGee J, Bauer G, Kim HS, Tempkin T, Wheelock V, Annett G, Dunbar G, Nolta JA. 2012; Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol. 45:87–98. DOI: 10.1007/s12035-011-8219-8. PMID: 22161544. PMCID: PMC3259334.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr